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Early Neocortical
Regionalization in the Absence

of Thalamic Innervation
Emily M. Miyashita-Lin,1* Robert Hevner,1*
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John L. R. Rubenstein1‡

There is a long-standing controversy regarding the mechanisms that generate
the functional subdivisions of the cerebral neocortex. One model proposes that
thalamic axonal input specifies these subdivisions; the competing model pos-
tulates that patterning mechanisms intrinsic to the dorsal telencephalon gen-
erate neocortical regions. Gbx-2 mutant mice, whose thalamic differentiation
is disrupted, were investigated. Despite the lack of cortical innervation by
thalamic axons, neocortical region–specific gene expression (Cadherin-6, EphA-
7, Id-2, and RZR-beta) developed normally. This provides evidence that pat-
terning mechanisms intrinsic to the neocortex specify the basic organization of
its functional subdivisions.

The mammalian neocortex is organized in-
to regionally distinct functional subdivisions.
There are two proposed mechanisms for neo-
cortical regionalization. The protocortex hy-
pothesis postulates that thalamic afferent fi-
bers play an important role in neocortical
regional development (1). On the other hand,
the protomap hypothesis (2) postulates that

regionalization of the neocortex is due to mo-
lecular differences within the neocortical ven-
tricular zones (3–7). We investigated mice with
a mutation of the Gbx-2 gene (8, 9) that disrupts
thalamic histogenesis, which in turn blocks for-
mation of thalamocortical projections.

Analysis of Gbx-2, Id-4, and Lef-1 expres-
sion showed that Gbx-2–deficient mice have
abnormal thalamic development. Gbx-2 ex-
pression in the dorsal thalamus (DT) could be
detected in the subventricular (SVZ) and
mantle zones (MZ) (10). In the Gbx-2 mutant,
Gbx-2 mRNA expression was maintained in
the SVZ but was lost in the MZ (Fig. 1, E and
F), suggesting that the mutant is unable to
produce normal DT postmitotic cells (Gbx-2
transcripts were detected in the mutant be-
cause the 59 end of this gene has not been
altered). This hypothesis was supported by
the expression pattern of Id-4. The Id-4 helix-
loop-helix gene (11), which normally is ex-
pressed throughout the MZ of the DT, was
not detectable in the DT of the Gbx-2 mutant
(Fig. 1, I and J). In addition to the apparent

defect in the MZ, there was ectopic expres-
sion of Lef-1 in the mutant. At embryonic day
(E) 14.5, the Lef-1 high mobility group box
transcription factor (12) was expressed in the
MZ of the pretectum (PT) and DT. In the
Gbx-2 mutants, Lef-1 expression in the PT
was unaffected, whereas its expression in the
MZ was lost in the DT, and ectopic periven-
tricular expression was observed (Fig. 1, M
and N). Thus, by E14.5, loss of Gbx-2 func-
tion disrupted differentiation in most, or all,
of the DT.

To verify the thalamic abnormalities, we
studied thalamic anatomy at postnatal day (P)
0, the day when these animals die. Histolog-
ical abnormalities in the P0 Gbx-2 mutant
thalamus were even more pronounced. Gbx-2
expression marked the lateral dorsal (LD),
centromedian (CM), dorsal lateral geniculate
(DLG), and reuniens (Re) nuclei (Fig. 1G).
Several other nuclei also expressed Gbx-2,
including the ventral lateral, the midline, the
anteromedial, the mediodorsal, and the medi-
al geniculate (MG) nuclei (13). In the mutant,
there was only weak Gbx-2 expression,
which was restricted to a periventricular re-
gion (see asterisk in Fig. 1H).

Some thalamic regions of the Gbx-2 mu-
tants retained Id-4 and Lef-1 expression. Id-4
expression marked most nuclei in the DT and
the reticular nucleus (RT) of the ventral thal-
amus (Fig. 1K). In contrast, the Gbx-2 mutant
had greatly reduced Id-4 expression in most
areas of the DT (Fig. 1L) but retained expres-
sion in the RT, which does not express Gbx-2
(10). Limited Id-4 expression was detectable
in some dorsal thalamic areas that, on the
basis of their location, may correspond to the
ventrobasal complex (VB) and DLG nuclei
(Fig. 1L). Lef-1 expression marked specific
DT subdivisions including the DLG, VB,
ventromedial (VM), and posterior (Po) nuclei
(Fig. 1O). In the Gbx-2 mutant, Lef-1 expres-
sion was lost from most of the MZ, but unlike
the wild type, its expression was found near
the ventricle (arrow in Fig. 1P). Some Lef-1
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expression was observed in areas that we
interpret as corresponding to the VB, DLG,
and Po nuclei (Fig. 1P) (13). Thus, although
most of the thalamus was defective in the
Gbx-2 mutant, there remained some areas
that may correspond to thalamic nuclei that
normally have reciprocal connections with
the neocortex (for example, DLG, VB, Po,
and MG).

To determine whether thalamocortical
connections were intact in the mutant, we
used 1,19-dioctadecyl-3,3,39,39-tetramethyl-
indocarbocyanine perchlorate (DiI) and im-
munohistochemical staining methods. Place-
ment of a DiI crystal into the DT of E14.5
normal (Gbx-21/1 or Gbx-21/2) embryos la-
beled cell bodies and axons that project into
the internal capsule (IC) (n 5 5) (Fig. 2A). In
E14.5 Gbx-22/2 embryos, the number of ax-
ons entering the IC was severely reduced
(n 5 5) (Fig. 2B). Implanted DiI in the DT at
E16.5 labeled thalamocortical fibers that
reach the neocortical subplate in normal ani-
mals (n 5 7) (Fig. 2C), whereas thalamic
fibers stopped in the IC of Gbx-2 mutants
(n 5 5) (Fig. 2D). Placement of DiI in the DT
of normal mice at E18.5 (Fig. 2E) or P0 (14)
labeled thalamocortical fibers anterogradely
and corticothalamic fibers and their cell bod-
ies retrogradely (n 5 4). In most mutant cases
(n 5 5), no labeled axons were observed in
the cortex (Fig. 2F). In only one mutant
(E18.5) did a few thalamocortical fibers in-
nervate the subplate; this sparse innervation
was detected in both hemispheres (14).

Finally, placement of DiI in the normal
neocortex at E18.5 (14) or P0 (Fig. 2G)
labeled thalamocortical fibers and their cell
bodies retrogradely (inset in Fig. 2G) and
cerebral peduncle fibers (Fig. 2G) and corti-
cothalamic fibers (14) anterogradely (n 5 4).
In contrast, no retrograde labeling of thalamic
neurons was observed after DiI injections

into the Gbx-2 mutant neocortex in six of
seven cases (14). In the single exceptional
case, both corticothalamic and thalamocorti-

cal projections were present in both hemi-
spheres, showing that this animal did not
have a fully penetrant defect in its thalamus.

Fig. 1. Gene expression patterns in the thalamus of E14.5
and P0 Gbx-2 mutant and control brains. The age and
genotype of the sections are indicated on the left; the gene
markers are indicated at the top of the figure. (A to D) Nissl
stain reference sections. (E to H) Expression of Gbx-2. (I to L)
Id-4 expression. (M to P) Lef-1 expression; the arrow in (P)
highlights the ectopic periventricular expression. CM, centro-
median; VLG, ventral lateral geniculate; VZ, ventricular zone.
(25). Scale bars: (E), 0.75 mm [same for (F) to (L), (O), and
(P)]; (M), 0.53 mm [same for (N)].

Fig. 2. Loss of neocortical innerva-
tion by the thalamus in Gbx-2 mu-
tants. DiI fluorescence is in pink;
the tissue is counterstained in blue
with DAPI (4,6 diamidino-2-phe-
nylindole). All panels are oriented
with medial to the left. (Left) Gbx-
21/1 or Gbx-21/2. (Right) Gbx-
22/2. (A and B) DiI injections in
the DT at E14.5 label thalamocor-
tical fibers that reach the striato-
pallial angle in normal mice [arrow
in (A)]; in Gbx-2 mutants, these
fibers extend only into the midpor-
tion of the IC [arrow in (B)]. (C and
D) DT injections of DiI at E16.5
retrogradely label some neocorti-
cal cells [arrow in (C)]. In Gbx-2
mutants, thalamocortical fibers ex-
tend no farther than the lateral IC
[arrow in (D)]. DiI labeling in the
cortex (Ctx) is nonspecific. (E and
F) DT injections of DiI at E18.5; in
controls (E), thalamic fibers that
innervated the cortex are labeled,
and neocortical pyramidal neurons
are retrogradely labeled [inset in
(E)]. In Gbx-2 mutants (F), most
thalamic fibers remain within the
IC [long arrow in (F)], although a
few approach the cortex [short ar-
row in (F)]. The asterisk in (F) indi-
cates an aberrant extension of the
lateral ventricle (LV ) observed in
some Gbx-22/2 forebrains. (G and
H) Labeling of neurons in the DT
from DiI injections into the cortex
at P0. Retrogradely labeled cells are
visible in the normal DT [arrows
and inset in (G)] but not in the
mutant DT. In the mutant, cortico-
thalamic fibers did not reach that
thalamus (14), whereas the cerebral peduncle (cp) was present (G and H). fr, fasciculus retroflexus; Hp,
hippocampus; LGE, lateral ganglionic eminence; St, striatum. Scale bars: (A), 500 mm (all panels shown
at the same scale); inset in (E), 50 mm (both insets shown at the same scale) (26).

R E P O R T S

www.sciencemag.org SCIENCE VOL 285 6 AUGUST 1999 907



To confirm the DiI results, we hemisected
some of the P0 brains; one hemisphere was
used for DiI tracing, and the other was used to
study the expression of thalamocortical ax-
onal markers [that is, serotonin (5HT),
P450c17, and calretinin]. In each case, the
immunohistochemical and DiI results were
concordant. 5HT immunohistochemistry (15)

revealed that only the control animal had
staining of the SP/CP (subplate/cortical plate)
(Fig. 3, A and B). Immunohistochemical
analysis of P450c17, an enzyme that converts
pregnenolone to DHEA (dehydroepiandros-
terone), showed thalamocortical fibers in the
intermediate zone (IZ) and SP in normal mice
(16) but not in Gbx-2 mutants (Fig. 3, C and

D). Whereas the thalamocortical pathway
was disrupted, other P450c17-labeled cortical
axons, such as the angular bundle (AB), ap-
peared unaffected (Fig. 3D) (13).

Another marker of thalamocortical axons
is calretinin, a calcium-binding protein that is
expressed in the midline and intralaminar
thalamic nuclei and their axons (17). At
E14.5, calretinin-positive thalamocortical ax-
ons in normal mice extended to the IC (Fig.
3E), and by P0, they innervated some cortical
areas (Fig. 3G). In E14.5 mutants, calretinin-
positive axons were severely reduced or ab-
sent from the IC (Fig. 3F), and by P0, there
were no detectable calretinin-positive fibers
in the mutant cortex (Fig. 3H). The mecha-
nism underlying the defective thalamocorti-
cal tract is unknown.

The cerebral cortex of Gbx-2 mutants,
which lacked thalamocortical innervation,
proved to be an excellent system to study the
role of thalamocortical fibers on neocortical
regionalization and differentiation. P0 brains
were hemisected; one hemisphere was used
for DiI analysis to verify that thalamocortical
innervation was defective, and the other
hemisphere was used to study neocortical
development. Nissl-stained specimens did
not reveal obvious defects in lamination
and regionalization (Fig. 4, D and E), al-
though in ;20% of the animals, morpho-
logical defects, such as enlarged ventricles
and tears in the telencephalic wall at the
cortical/subcortical boundary, were ob-
served (asterisk in Fig. 2F). We restricted
our molecular analysis of the Gbx-2 mutant
neocortex to animals that lacked obvious
morphological defects.

We studied neocortical regionalization
and laminar organization using the expres-
sion of Id-2, EphA-7, RZR-beta, Cadherin-6,
and Tbr-1 at P0 and found no obvious differ-
ences in the cortical expression of these genes
between control (Fig. 4, B, G, I, L, and N)
and Gbx-2 mutants (Fig. 4, C, H, J, M, and
O). Expression of Id-2 (Fig. 4, A to C), which
encodes a helix-loop-helix protein, demar-
cates functionally important regional bound-
aries and layers in the cortex (5). For in-
stance, layer 5 expression has a rostral bound-
ary at the sensory-motor limit at P0 and P6
(18) (see boundary “i” in Fig. 4A). Expres-
sion of EphA-7 (Fig. 4, F to H), a receptor
protein tyrosine kinase that is involved in
axon guidance (19), has two neocortical ex-
pression boundaries at P6 and P0: Boundary i
approximates the sensory-motor limit (18);
boundary “ii” is within the sensory neocortex
(Fig. 4, F to H). Boundary ii has not been
mapped with respect to neocortical subdivi-
sions. Expression of RZR-beta, which en-
codes an orphan nuclear receptor (20), has a
limit that also approximates boundary ii (Fig.
4, K to M). Expression of Cadherin-6 (Fig. 4,
N and O), which encodes a cell-surface ad-

Fig. 3. Immunohisto-
chemical analysis of
thalamocortical pro-
jections in Gbx-2 mu-
tants: expression of
5HT and P450c17 at
P0 and calretinin at P0
and E14.5. The geno-
types are indicated on
the left-hand side; the
markers and age of
the brains are listed at
the top. (A and B) 5HT
expression in saggital
sections of P0 brains.
5HT expression was
lost in the SP/CP of
the mutant. (C and D) P450c17 expression at P0 in coronal sections; expression was lost in the
fibers in the IZ/SP of the mutant, whereas expression in the AB in the subiculum (SUB) was
preserved (D). (E and F) Calretinin expression at E14.5 in coronal sections revealed that labeled
fibers in the IC were absent in the mutant. (G and H) Calretinin expression at P0 in coronal sections
revealed that labeled fibers in the SP were absent in the mutant. NCX, neocortex (27). Scale bars:
(A), 1.3 mm; (C), 1.0 mm [same for (D)]; (E), 0.83 mm [same for (F)]; and (H), 1.2 mm [same for
(G)].

Fig. 4. In situ hybrid-
ization shows that in-
traneocortical gene ex-
pression boundaries and
neocortical lamination
are not affected by the
lack of thalamic input
in Gbx-2 mutants. Ge-
notypes are indicated
on the left and gene
markers on top. Nissl-
stained sections are
shown (D and E). Ex-
pression of Id-2, EphA-
7, and RZR-beta at P6
(A, F, and K) and P0 (B,
G, and L) respects two
intraneocortical bound-
aries: i and ii. These
boundaries appear nor-
mal in P0 Gbx-2 mu-
tants (C, H, and M).
Cadherin-6 expression
(P0) in parietal neocor-
tical areas 1 and 2 (ar-
rowheads) in the mu-
tant matches normal
expression (N and O).
Tbr-1 expression (P0)
shows its normal strong
expression in the motor
cortex (MC) and layer 6
in the mutant (28) (I
and J). The asterisk in
(K) indicates an area
where low RZR-beta ex-
pression is detectable.
Scale bars: (O), 0.88 mm [same for (N)]; (J), 0.7 mm [same for (B) to (E), (G) to (I), (K), and (L)]; and
(A), 1.2 mm [same for (F) and (K)].
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hesion protein, demarcates parietal areas 1
and 2 and temporal area 1 (21). Finally,
laminar development was further assessed by
studying Tbr-1, a T-box gene, which is ex-
pressed in layer 6 (5) (Fig. 4, I and J).

In summary, Gbx-2 mutant mice have a
block in DT differentiation that affects most
thalamic regions and that disrupts growth of
thalamocortical axons. Despite the absence of
thalamic afferents, neocortical regionaliza-
tion and histogenesis were indistinguishable
from control mice at P0. This provides strong
evidence that regional specification within
the neocortex is controlled at least in part by
patterning mechanisms that are intrinsic to
the telencephalon. The molecular regulation
of patterning in the telencephalon is poorly
understood. Candidate cortical patterning cen-
ters include the dorsal midline, which expresses
bone morphogenetic proteins and Wnts, and the
rostral midline, which expresses fibroblast
growth factor–8 (22). These tissues may con-
trol the expression of transcription factors that
are implicated in regulating cortical regionaliza-
tion (for example, Emx-1, Emx-2, Otx-1, Bf-1,
Gli-3, Tlx, and Tbr-1) (18, 23). Although some
early steps in neocortical molecular regionaliza-
tion (even within the sensory neocortex) and
lamination may be largely independent of tha-
lamic influence, it is likely that thalamic input
regulates later steps in neocortical development,
such as neuronal maturation, and the formation
of neocortical modules (for example, barrels)
and association cortices. This latter hypothesis
is based on the evidence that afferent fibers can
regulate the architecture and gene expression of
thalamic and cortical tissues (24). Unfortunate-
ly, because Gbx-2 mutants die on P0, we need

to devise methods to study the mutant neocor-
tex in more mature animals to investigate the
role of thalamic afferents on postnatal neocor-
tical development.
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