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For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying
the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We
present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for develop-
mental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particu-
larly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory
receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids),
and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all
levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the inter-
play of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is
an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning,
and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the
50th anniversary of the Society for Neuroscience.

Milestones in barrel cortex development and plasticity:
discovery and coining the term “barrels”
The Society for Neuroscience was founded by Ralph Waldo
Gerard in 1969, and the first meeting of the Society for
Neuroscience gathered in Washington, DC in 1971. Coincidentally,
the term “barrels” was coined in 1969, not far from Washington,
DC by Thomas Woolsey, a medical student under the supervision
of Hendrik Van der Loos at the Johns Hopkins University in
Baltimore. Early cytoarchitectonic studies had already noted un-
usual clusters of neurons in layer 4 in the lateral cortex of rodents
(de Nó, 1922; Rose, 1929), but the functional correlate of this ana-
tomic organization was unclear and was wrongly attributed to the
auditory cortex. It was ThomasWoolsey who made the observation
that the whiskers on the snout of mice are represented by a pat-
terned array of cylindrical neural aggregates in the somatosensory
cortex. Using Nissl and Golgi staining, Woolsey and Van der Loos
described the clustering of layer 4 neurons around a central, cell-
sparse region (named the hollow) that was most clearly visible in
thick brain sections cut tangential to the cortical surface. They
further demonstrated a remarkable, one-to-one correspondence
between the layout of the barrels with those of the large mystacial
vibrissae in the whisker pad. This landmark paper was published in

1970 in the then leading neuroscience journal, Brain Research. To
give a sense of the excitement of this discovery, we include here
excerpts from Tom Woolsey’s (2016) review of the Woolsey and
Van der Loos (1970) paper:

“In the summer of 1965, before entry in medical school at
The Johns Hopkins, I worked in the Laboratory of
Neurophysiology mapping sensory evoked potentials in
the cerebral cortex of mice. This was a suggestion (assign-
ment?) from my father [Clinton Woolsey] who had pub-
lished studies of cortical evoked potential maps of rats in
the late ‘40s (Woolsey, 1952) . . . I noticed that, unlike the
Nissl stained sections of the human brains . . . the sections
of mouse brains had odd patterns of layer IV neurons in
the somatosensory cortex. The region with patterns cor-
responded directly with the region that responded to
stimulation of the facial whiskers- vibrissae- on the
contralateral face. . . . I published an article on cortical
localization of sensory functions in mouse (Woolsey,
1967). . . . I approached a then Assistant Professor of
Anatomy who had taught neuroanatomy to us in our first
year . . . Hendrik Van der Loos, MD, PhD (Molliver et al.,
1994). From his lectures we learned that he had devel-
oped a staining method combining Golgi and Nissl stain-
ing. I thought this would be excellent for understanding
organization of cell clusters in the ‘whisker’ cortex . . . In
the Van der Loos laboratory, I learned and used the tech-
nique for embedding tissues in celloidin for slicing
thicker sections on sliding microtomes. This was an
obvious advantage for accurately slicing mouse brains
tangential to the right brain surface location to visualize
the cytoarchitecture of the whisker cortex in layer IV.
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The first Nissl stained slides showed the answer! Rings of
neurons arranged in 5 rows mirroring the pattern of
whiskers on the contralateral face and in layer IV of the
cortex activated by whisker stimulation were obvious. In
three dimensions they resembled cylinders tapered at the
junctions with layers III above and V below. I named
these structures barrels. The larger whiskers matched
what I termed the posterior medial barrel sub-field
(PMBSF) of the mouse somatosensory cortex (SmI) . . . I
put together the collages of photomicrographs and
images of the tangential sections . . . In the spring of 1969,
I wrote the manuscript and completed the graphics. In
discussion with Van der Loos, he asked why I had added
his name as author. . . . I pointed out the science had been
done largely in his laboratory and this was appropriate . . .We
submitted the article to Brain Research in the summer of
1969. . . .We both were astounded to receive a letter from
Professor Konrad Akert, the founder and chief editor of
Brain Research, dated 2 weeks after the manuscript arrived in
Zurich, . . . accepting the paper without any changes.”

Following this pioneer paper, Van der Loos and Woolsey
(1973), tested the hypothesis that signals derived from the
whiskers informed barrel cortex development. The first land-
mark experiment was a cauterization of whisker rows in new-
born mice followed by anatomic investigation of the barrel field
layout several weeks later. The striking result was that lesions
performed during the first few days of life prevented the forma-
tion of the corresponding barrel structures. Frank Rice, a gradu-
ate student of Van der Loos at the time, remembers this period
as follows (personal communication):

“I began my PhD studies in the Department of Anatomy
at Johns Hopkins Medical School in 1969 where Hendrik
[Van der Loos] was on the faculty I think as an Associate
Professor. I remember his promotion to Professor while I
was there. . . . I fell in love with the Neuroanatomy Course
taught almost entirely by Hendrik, which began in
December 1969 . . . we hit it off very well. I believe Tom
[Woolsey] was in his last year of med school in 69–
70 . . . That was right at the time of the first publication
and when the first whisker cauterization study was in
progress. . . . Tom’s father earned renown for the physio-
logical mapping showing the detailed fundamental prin-
ciple of somatotopic organization of the cortex in several
species. . . . So, Tom followed in his father’s footsteps. He
mapped the mouse cortex in the physiology department
as Summer research project. I am pretty sure that it
was Tom who knew of the cytoarchtectonic studies of
Rose from the 1920s . . . deduced from sensory deficits in
stroke patients. Tom recognized that those structures
were physiologically located in somatosensory cortex. So,
he worked with Hendrik to learn the celloidin technique
where they gradually changed the cutting angle to being
parallel to the cortical surfaces where the ‘barrel’ pattern
representing the whiskers became evident. So that was
pretty much Tom’s work. Hendrik came up with the
whisker cauterization study, which was entirely done by
him and his wife Nolette. So, I was there when the sec-
tions were first coming out with the excitement of the
missing rows of barrels, which led to the question of

whether the barrels developed before or after the neonatal
cauterizations, which became my thesis project.”

The above-referred studies started the “whisker-barrel”
research. Shortly after these publications, Woolsey and Van der
Loos parted ways and pursued productive “barrel” research in
their own respective laboratories. They made many other impor-
tant contributions to the field, including naming the whisker-
related cellular aggregates in the thalamus “barreloids” (Van der
Loos, 1976) and those in the brainstem “barrelettes” (Ma and
Woolsey, 1984).

How the barrel cortex became a developmental model
As a PhD student of Hendrik Van der Loos, Frank Rice followed
him to Lausanne to finish his dissertation work. There, they set
up an entire laboratory devoted to the understanding of barrel
development, including studies of how genetic variations of the
whisker implantation or function affected barrel organization.
Using simple histologic stains (Nissl), Rice and Van der Loos
showed that “the onset of barrel formation coincides with the
moment after which injury to the pertinent somatosensory
periphery no longer causes profound alterations in barrel mor-
phology” (Rice and Van der Loos, 1977). Using comparative
“evo-devo” strategies, they also showed that barrel-like somato-
sensory cortical patterning is present in most rodents that whisk
(hamster, mouse, rat, and gerbil) while it is sparse or absent in
species that minimally or never whisk (guinea pig, rabbit, and
cat) (Rice, 1985a,b; Rice et al., 1985). These experiments indi-
cated that the peripheral sensory receptors and their function
were important drivers of anatomic organization, inspiring fur-
ther studies on how the innervation to vibrissal follicle-sinus
complexes develops during embryonic life (Fig. 1) (Rice et al.,
1997; Cronk et al., 2002; Ebara et al., 2002).

Not just neurons, axon terminals too replicate the whisker
patterns
Around the same time of the initial barrel papers, Herbert
Killackey, a postdoctoral fellow with Ford Ebner, was studying
thalamocortical (TC) projections in the opossum (Killackey and
Ebner, 1972, 1973). Enthused by the mouse barrel cortex, he
used the method of the time, silver impregnation of degenerating
axons, and demonstrated a whisker-related discontinuous pat-
tern of TC axons in the SI cortex of rats (Killackey, 1973).
Killackey started the third pioneering laboratory in barrel research
as a new Assistant Professor at the University of California,
Irvine (Killackey and Leshin, 1975). One of us (Erzurumlu) had
doctoral training (1977–1981) with Herb Killackey, and worked
on the connections of the brainstem trigeminal nuclei and
topographic order in the trigeminal nerve and ganglion
(Erzurumlu and Killackey, 1979, 1980, 1982a,b, 1983).

Emergence of new markers for barrel development
Before immunocytochemistry (or genetic labeling) became prev-
alent, enzymatic histochemistry provided useful tools to visualize
sensory maps, often with primary studies in the visual system
(which was the hot topic in neuroscience at the time) and follow-
up studies in the barrel cortex. In one such line of work,
Margaret Wong-Riley showed that mitochondrial enzyme, cyto-
chrome oxidase (CO) histochemistry could be used reliably to
visualize patterns along the visual pathway and following sensory
deprivation (Wong-Riley et al., 1978; Wong-Riley, 1979). This
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suggested that the same histochemical staining could be used for
visualization of the barrel patterns in normal and neonatally
vibrissa-removed mice (Wong-Riley and Welt, 1980). Succinic
dehydrogenase, another mitochondrial marker, was found by
Gary Belford (then a graduate student of Herb Killackey) to be

another useful marker of the barrel cortex. The prevailing thought
then was that cortical “activity levels of SDH or CO closely corre-
sponded to the patterns of thalamocortical afferent terminals”
(Killackey and Belford, 1979), but, although enriched in axon ter-
minals, mitochondrial enzymes label both the presynaptic and

Figure 1. Barrel research pioneers. Photographs of Tom Woolsey’s father Clinton Woolsey taken around 1965 and Tom Woolsey, right after the first barrels paper was submitted, but before
its acceptance, from a happy time, the evening of his wedding. Hendrik Van der Loos, at a poster in 1980. Frank Rice in Switzerland, the year he defended his PhD thesis. Herb Killackey, at his
wedding in Providence, RI, in 1973, with Ford Ebner in the background. Bottom left, Ford Ebner in 1988, preparing to sail to “the ocean of barrel cortex plasticity” in the years to come (photo-
graph by R.S.E.). Autograph in the middle of the figure is that of Mark Bear (a former student of F. Ebner) from 1995, when he was visiting R.S.E. at Louisiana State University Health Sciences
Center in New Orleans. We are grateful to Tom Woolsey, Frank Rice, and Herb Killackey for providing the original photographs of the discoverers and pioneers, just when all was happening
and they were enjoying happy times in their lives.
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postsynaptic elements (Kageyama and Wong-Riley, 1982).
Because of the simplicity of CO staining and the clear delimitation
of barrel topology it provided in cortical flat mounts, CO histo-
chemistry took over and has been used ever since to visualize
barrels.

Serotonin immunocytochemistry (Fig. 2A), AChE histochemis-
try (Kristt, 1979; Schlaggar and O’Leary, 1994), and labeling of
extracellular matrix molecules started to be investigated at that time

because of their precocious appearance
and the observation that they clearly
labeled the barrels at early stages
(Cooper and Steindler, 1986; D’Amato
et al., 1987; Steindler et al., 1989;
Rhoades et al., 1990). Serotonin label-
ing in the barrel cortex was initially
interpreted as a transient overgrowth of
raphe axons into the somatosensory
cortex (D’Amato et al., 1987; Rhoades
et al., 1990) (Fig. 2A). However, later
studies showed that there is no exuber-
ant innervation from the raphe but that
serotonin is indeed taken up in TC ter-
minals (from E15 to P10) through
transient expression of the serotonin
transporter (5-HTT, SERT, Slc6a4) and
the vesicular monoamine transporters
(VMAT2, Slc18a2) in the developing
thalamus (Lebrand et al., 1996, 1998)
(Fig. 2B,D). Serotonin or SERT immu-
nocytochemistry has since then been
used as markers of the developing TC
axons. More recently, SERT expression
in the developing TC axons has been
used to create genetically modified
mice in which the SERT promoter
drives GFP expression (Moreno-Juan et
al., 2017; Mizuno et al., 2018).

Other useful markers of barrels have
emerged since. In particular, vesicular
glutamate transporter 2 (VGluT2), one
of the two isoforms of the vesicular glu-
tamate transporter, was found to be
expressed selectively in the TC afferents
(Nahmani and Erisir, 2005), and VGluT2
immunocytochemistry rapidly became a
standard for analyzing barrel cortex (Fig.
3) (Liguz-Lecznar and Skangiel-Kramska,
2007; Nakamura et al., 2007).

TC axons as major players of barrel
development
In the discussions centered around what
initiated the barrel patterns in the cor-
tex, a main issue in the early days was
the difficulty of tracing axons in devel-
oping brains. An important turning
point was brought about in 1987, by the
introduction of the lipophilic carbocya-
nine dyes that could be used as neuronal
tracers in fixed tissues (Godement et al.,
1987). Carbocyanine dye labeling and
single-axon reconstruction along the
barrel system revealed that TC axons
begin invading the cortical plate at the

time of birth in both mice and rats (Erzurumlu and Jhaveri,
1990; Senft and Woolsey, 1991). This allowed Erzurumlu and
Jhaveri (1990, 1992) to document the time course of TC axon de-
velopment in the parietal cortex. Simultaneous labeling of TC
axons and raphe cortical projections with different colored car-
bocyanine dyes in the same brain (Erzurumlu and Jhaveri, 1992),

Figure 2. In a landmark paper published in 1987, D’Amato et al. (1987) reported the presence of a transient, dense, seroto-
nergic innervation in all primary sensory areas of cortex, including the barrel cortex (A). This is visible on tangential sec-
tions of cortex at P7 (C) and was interpreted as an exuberant serotonergic innervation from the raphe, which followed
sensory TC axons and was subsequently pruned (A). Later observations (Lebrand et al., 1996) demonstrated that serotonin
(5-HT) is indeed captured by the developing sensory TC axons because of the expression of the serotonin transporter
(SERT/Slc6a3) and the vesicular monoamine transporter (VMAT2/Slc18a4) in the sensory thalamic neurons. The expression
of these 2 genes starts in embryonic life (EXIV) and ends during the second postnatal week (P10) in mice. B, Thus, raphe
neurons are not exuberant, but 5-HT staining reflects transient neurotransmitter properties of glutamatergic thalamic sen-
sory neurons. As schematized in D, raphe brainstem neurons (blue) synthesize 5-HT via 2 enzymes, tryptophan hydroxy-
lase (TPH2) and amino acid decarboxylase (AADC). Axon terminals of raphe neurons release 5-HT in the developing brain/
cortex, which is captured from the extracellular space by glutamatergic (glut) neurons (pink) that express the high-affinity
membrane transporter, SERT. In the cytoplasm, 5-HT is then concentrated into synaptic vesicles by VMAT2, where it is
protected from monoamine-degrading enzymes, in particular monoamine oxidase (MAOs). Nissl and SERT ISH images are
from the Allen Brain Atlas: Mouse Brain (Slc4-79591679).
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or comparisons of carbocyanine dye labeling of thalamic affer-
ents and serotonin immunocytochemistry in opposite hemi-
spheres of the same brain (Blue et al., 1991), proved that TC
axons are the first pattern forming elements, while clustering of
neurons in layer 4 occur 1 d later.

Howmouse genetics opened a window to the mechanisms
underlying barrel formation
The use of mouse genetics to study barrel cortex development
was started in the1980s by Hendrik Van der Loos and Egbert
Welker in Lausanne. This involved labor-intensive screening of
mice with spontaneous mutations that led to abnormal number
and patterns of vibrissae and/or barrel fields. By the 1980s, it was
well established that the sensory periphery plays an instructive
role in barrel patterning; damage to whisker follicles or the pres-
ence of supernumerary vibrissae on the snout (Van der Loos et
al., 1986; Welker and Van der Loos, 1986) had predictable conse-
quences in brain regions representing the vibrissae.

A surprising observation was that of a spontaneous mutation
in which no barrels formed in the cortex despite a normal
whisker pad and normal barrel patterning in the brainstem and
thalamus (Welker et al., 1996). In these mice, TC axons form
broader terminations, barrels do not develop, and whisker recep-
tive fields of cortical cells are broader (Welker et al., 1996;
Gheorghita et al., 2006). This mutation was identified, a few years
later (Abdel-Majid et al., 1998), as a spontaneous disruption of
the adenylate cyclase 1 gene (Ac1).

At exactly the same time as discovery of the “barrelless”muta-
tion, another mouse mutant with a similar phenotype was dis-
covered by one of us (P.G.) while conducting research on the
developmental role of serotonin (5-HT). Mouse mutants with
excess 5-HT, resulting from disruption of the monoamine oxi-
dase A (Maoa) gene, had no barrels, but normal patterning in
the thalamus and the brainstem. These effects were reversed
(barrels formed) by reducing 5-HT levels and were replicated by
pharmacological blockade of MAOA during the critical period.
Previously, it was reported that 5-HT1B receptors are also transi-
ently expressed in the developing thalamus (Bennett-Clarke et
al., 1993), and 5-HT has a role in inhibiting glutamate release
(Rhoades et al., 1994). The Gaspar group took this a couple steps
further; with genetic tools, they showed that lack of 5-HT1B res-
cued the phenotype of Maoa KO mice (Salichon et al., 2001).

Whole-cell patch-clamp recordings of layer 4 neurons showed a
strong presynaptic inhibitory effect of 5-HT1B signaling on TC
axons (Laurent et al., 2002). Collectively, these findings demon-
strated that TC axons autoregulate their glutamate release via
extracellular 5-HT binding to their 5-HT1B receptors. Although
the phenotypes ofMaoa and Ac1 KO are very similar, it remains
unclear whether they share similar mechanisms.

Other genetically modified mouse models are discussed in the
following sections.

Development of TC axons: first encounters guide
topography
Along the trigeminal pathway, axon navigation and pattern for-
mation do not follow a sequential order from the periphery to
the cortex. Rather, they happen concurrently (Iwasato and
Erzurumlu, 2018). In mice, TC axons from the ventroposterome-
dial nucleus (VPM) are already at the diencephalon-telencepha-
lon border by embryonic day (E) 12.5 (López-Bendito et al.,
2006; Antón-Bolaños et al., 2018), well before the trigeminotha-
lamic afferents reach the VPM around E15.5 (Kivrak and
Erzurumlu, 2013).

TC axons are preordered and maintain near-neighbor rela-
tionships as they navigate through the subpallium (Molnár et al.,
2012). Perturbation of subpallial development by conditional
inactivation of the transcription factor Ebf1 leads to misrouting
of the TC axons and disruption of their topography and pattern-
ing in the barrel cortex (Lokmane et al., 2013). The role of axon
fasciculation in establishing topographic organization in the
barrel map is nicely illustrated in mouse mutants in which the
trigeminothalamic axons project bilaterally (Renier et al., 2017)
and form distinct ipsilateral and contralateral domains in the
VPM. In these mice, TC axons segregate into two independent
barrel cortices that lie side by side, suggesting that axons trav-
eling together prefer remaining together rather than following
topographic rules (Renier et al., 2017; Gaspar and Renier,
2018).

TC axons arrive below the cortical plate by E13.5, before
the differentiation of the prospective barrel site in layer 4
(Erzurumlu and Jhaveri, 1990; Senft and Woolsey, 1991;
Catalano et al., 1996). They transiently interact with subplate
cells, forming functional synapses (for review, see Kanold and
Luhmann, 2010). Early ablation of subplate neurons during em-
bryonic life prevents thalamic axons from penetrating into the
cortex (for review, see Hoerder-Suabedissen and Molnár, 2015).
Processes of the subplate cells continue to interact with TC axons
well into the early postnatal period during whisker-related pat-
terning of TC axons (Piñon et al., 2009), and immunotoxic
lesions of the subplate disrupt barrel formation (Tolner et al.,
2012).

Shaping TC axons into barrel clusters
Whether TC axons are already topographically organized in bar-
rel domains when they reach the cortex or whether periphery-
related organization emerges later has been debated. In the
mouse brain, Senft and Woolsey (1991) described TC axon ter-
minals as “whisker-related Gaussians” that initially overlap but
later (after postnatal day [PND] 4) segregate into whisker-related
patches as appropriate collateral branches are elaborated and
inappropriate ones pruned. In the rat, Catalano et al. (1996)
described a simpler development, in which single axonal arbors
had fewer branches initially and became elaborated without
exceeding barrel boundaries. A later carbocyanine-dye-labeling
and single-axon-reconstruction study in the mouse (Agmon et

Figure 3. A, What is in a barrel? Glutamatergic spiny stellate and star pyramidal cells (yel-
low) of layer 4 aggregate along the walls of a barrel in the mouse SI cortex. Their dendrites
orient toward the barrel hollows that are filled with the terminal arbors (blue) of TC axons
from the whisker representation (barreloid) zone of the VPM. Axons of barrel cells project
mostly to the supragranular (2/3) layers. B, Photomicrograph of a PND7 mouse barrel cortex
immunostained for VGluT2 (blue), a marker for TC axons, and NeuN (yellow) to mark the nu-
clear architecture of layer 4.
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al., 1993) documented that TC axons course through layers 6
and 5 with little or no branching on PND0, develop lower-tier
branches at the border of layers 5 and 6 by PND2, and begin
elaborating patchy dense clusters in layer 4 by PND4. The
authors concluded that TC terminals in layer 4 projected from
the deep tier and “do not develop from an initially profuse arbo-
rization pattern through pruning of inappropriate branches.”
The P.G. and R.S.E. laboratories conducted single-TC axon
reconstruction studies in (C3H and C57Bl/6) mice and com-
pared them with those from Maoa and NR1 (Grin1) KO mice,
respectively (Rebsam et al., 2002; Lee et al., 2005) and showed a
somewhat different picture, with earlier branching in layer 4 and
lack of prepatterning in deep layers. These results paved the way
for future studies with KO models to sort out the role of presyn-
aptic versus postsynaptic elements in pattern formation.

Presynaptic and postsynaptic communication in barrel
formation
Mouse models with region-specific gene KO have been powerful
instruments in dissecting the roles of presynaptic and postsynap-
tic elements of TC circuits in pattern formation. This approach
became feasible with the introduction of site-specific recombina-
tion in mice using the Cre-lox recombination (Sauer and
Henderson, 1988; Tsien et al., 1996). The first of these mouse
lines involved KO of Grin1 (NMDA receptor subunit 1) in exci-
tatory cortical neurons (Iwasato et al., 2000). In these mice, layer
4 neurons failed to orient their dendritic trees and TC terminals
developed extensive arbors that did not focalize in layer 4
(Iwasato et al., 2000; Datwani et al., 2002b; Lee et al., 2005). A
similar glutamatergic transmission defect was reported for cor-
tex-specific metabotropic glutamate receptor mGluR5 KO mice
(Ballester-Rosado et al., 2010).

Obviously, the main questions in site-specific gene deletions
were whether TC patterning and dendritic orientation of barrel
cells depended on each other. These questions were addressed in
mosaic cortical-gene-deletion models, in which only a subset of
layer 4 neurons lost Grin1, Grin2, or mGluR5. These studies
revealed that lack of one of these glutamate receptors alters den-
drite organization of layer 4 neurons (Espinosa et al., 2009;
Ballester-Rosado et al., 2010; Mizuno et al., 2014).

Genetic ablation of thalamic Grin1 or Ac1, an enzyme that
increases cyclic AMP in response to calcium influx, led to ab-
sence of barreloids in the thalamus and subsequently barrels in
the cortex (Iwasato et al., 2008; Arakawa et al., 2014b; Suzuki et
al., 2015). Despite the absence of neuronal aggregate patterns, in
both instances, some whisker-related patterning of TC could be
seen. Along similar lines, thalamus-specific deletion of RIM1 and
RIM2 proteins, which control synaptic vesicle fusion and neuro-
transmitter release, yielded a phenotype with absence of barrels
as cellular aggregates but presence of distinct TC terminal pat-
terns in the whisker representation area (Narboux-Nême et al.,
2012). Thus, it appears that, when thalamic cells lose NMDAR or
AC1 function or have significantly reduced presynaptic gluta-
mate release from their terminals (thalamic Rim1/Rim2 double
KO), the TC axons can still manage to form faint or partial
whisker-related patterns in the barrel cortex. Nonetheless, with
complete deletion of glutamatergic transmission in the VPM, in
VGluT1-VGluT2 double KO, TC axons do not form patterns in
the cortex (Li et al., 2013).

Recently, evaluation of barrel phenotype in staggerer mice
(with a mutation of the gene encoding the retinoic acid-related
orphan receptor a [RORa]) revealed disruption of patterns both

in the thalamus and cortex. Conditional Rora deletion in the
thalamus or cortex showed that RORa is cell-autonomously
required in the thalamus for clustering of TC axons and dendri-
tic maturation of layer 4 neurons in the barrel cortex (Vitalis et
al., 2018). In an earlier study, Matsui et al. (2013) found that den-
dritic orientation of barrel cells is controlled by the BTB/POZ
domain-containing 3 (BTBD3) transcription factor, and when
ectopically expressed in the ferret visual cortex, BTBD3 directs
dendrites of cortical cells toward active axon terminals. Int-
erestingly, BTBD3 appears to be controlled by the transcription
factor Lhx2 discussed above (Wang et al., 2017).

Despite all these elaborate genetic studies, almost half a cen-
tury after the first description of patterning of whisker-related
TC terminals in the rodent barrel cortex (Killackey, 1973;
Killackey and Leshin, 1975), we still do not know the exact mech-
anisms by which the TC axon terminals form clusters, replicating
the distribution of whisker follicles, three synapses away from
the periphery. Nonetheless, the emerging picture is that whisker-
related TC axons begin focalizing their terminals in an activity-
dependent manner. During this process, they regulate their own
glutamate secretion through 5HT-1B receptors binding extracel-
lular serotonin delivered to the cortex via raphe terminals
(Bennett-Clarke et al., 1993, 1996, 1997; Lieske et al., 1999;
Young-Davies et al., 2000; Salichon et al., 2001). Focalized activ-
ity of TC axon terminal patches is detected by the postsynaptic
spiny stellate and star pyramid cells (barrel cells) in an NMDA
receptor-dependent manner, and BTBD3 directs orientation of
barrel cell dendrites toward the TC terminal patches, subse-
quently forming the barrel rings. In vivo time-lapse imaging of
labeled TC axons and individual barrel cell dendrites revealed
dynamic orientation of the dendrites toward focalized TC
patches; and in NMDAR-deficient barrel cells, the motility
increased and orientation bias failed to develop (Mizuno et al.,
2014; Nakazawa et al., 2018).

Curiously, the barrels in the rat cortex resemble those of the
mouse cortex with cell-sparse centers until PND20, and then bar-
rel centers become uniformly cell-dense (Rice, 1985a), despite
the patterning of TC axons.

Specification of sensory cortices: intrinsic versus extrinsic
determinants
The development of TC axons and their major impact on the for-
mation of barrels became a central model in the broader debate
on the mechanisms underlying specification of cerebral cortical
areas (Rakic, 1988; O’Leary, 1989). Two main hypotheses were
discussed at the time. One hypothesis was that the neocortex is a
“tabula rasa” on which TC axons impress their characteristics.
Strong support for this hypothesis was provided by the whisker
lesion studies showing that sensory input was crucial to imprint
barrel patterns and by grafting experiments showing that pieces
of visual cortex transplanted into the somatosensory cortex could
develop TC axon patches (Schlaggar and O’Leary, 1991).
Furthermore, when visual or auditory inputs were rerouted to
the somatosensory thalamus, the somatosensory cortex would
become responsive to visual or auditory cues (Gao and Pallas,
1999; Frost et al., 2000; Sharma et al., 2000).

An alternative hypothesis held that there are intrinsic cortical
cues (proto map) that direct TC axon connectivity. In support of
this hypothesis, Rakic et al. (1991) provided evidence that reduc-
ing the population of selected thalamic fibers projecting into the
primary visual cortex of monkeys during midgestation induced
the formation of a novel cytoarchitectonic area, which they called
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area X. Topographic projections from the visual thalamus to
the primary visual cortex of congenitally anophthalmic mice
(Kaiserman-Abramof et al., 1980) strengthened this hypothesis.
Several years later, more evidence came from the barrel cortex.
This was based on the finding of a transgene (H-2Z1), of
unknown function, but whose expression was found to be intrin-
sic to layer 4 of the somatosensory cortex. Expression of H-2Z1
was found to be independent from sensory inputs, and to persist
in heterotopic grafts and in cultured explants (Cohen-Tannoudji
et al., 1994; Gitton et al., 1999). The balance of evidence shifted
further toward the “proto map” hypothesis with the seminal pa-
per by Fukuchi-Shimogori and Grove (2001), showing that corti-
cally secreted signaling molecule FGF8 determines the sites of
different sensory areas.

We now know that the neocortex is not a “tabula rasa”;
instead, spatiotemporal regulation of morphogens, some of
which are induced by sensory afferents, regulates the areal par-
cellation (Frangeul et al., 2016). Indeed, a variety of intrinsic
cortical signaling molecules involved in positioning and pat-
terning barrel maps have been discovered (Zembrzycki et al.,
2013, 2015; Stocker and O’Leary, 2016; for review, see Simi
and Studer, 2018), and developmental studies using the barrel
cortex as a model have revealed many important mechanisms
underlying specification and arealization of the mammalian
cerebral cortex.

Molecular signals involved in cortical specification
Cortical cues that are produced very early in development shape
the regional identity and define the position and dimensions of
the prospective somatosensory cortex (and other primary sen-
sory cortices). These signals will, in turn, attract specifically VPM
TC axons. Along the rostrocaudal and mediolateral dimensions
of the telencephalic vesicles that give rise to the neocortex, diffus-
ible morphogens and signaling molecules, such as Fgf8, Pax6,
Emx2, Sp8, and Couptf1, establish a fate map area in the ventric-
ular zone. This fate map is later transferred to the cortical plate
and defines the location and boundaries of the primary sensory,
motor, and association areas (Greig et al., 2013). The develop-
ment of in utero electroporation techniques permitted ectopic
manipulation of morphogen expression in the embryonic cortex,
and the resulting phenotypes were quite amazing, leading to
altered positioning of the barrel cortex along the rostrocaudal
dimension of the brain hemisphere. Most remarkably, creating
two sources of fibroblast growth factor (fgf8) on either pole of
the telencephalic vesicle led to duplicate barrel fields (Fukuchi-
Shimogori and Grove, 2001) and expression in multiple points
led to multiple fractured barrel maps (Assimacopoulos et al.,
2012). Similarly, manipulation of Pax6, Emx1, or Lhx2 in early
embryos led to differential expansion or contraction of primary
sensory cortical areas (Zembrzycki et al., 2013, 2015; Stocker and
O’Leary, 2016). Interestingly, the early sensory TC inputs to the
cortex contribute to the expression of region-specific transcrip-
tomes, as removal of these inputs leads to a respecification of the
primary somatosensory area into associative or secondary sen-
sory area (Vue et al., 2013; Pouchelon et al., 2014; Frangeul et al.,
2016).

At somewhat later stages in development, when corticogene-
sis is underway, other molecular cues are important to guide TC
axons to their proper cellular targets (López-Bendito et al., 2006).
Cortical principal (glutamatergic) neurons are highly diverse in
terms of connectivity and physiology. Although cortical identity
was initially defined by laminar position, it is increasingly

becoming clear that identity is defined by birth order and by mo-
lecular profile, which in turn determines a preferred connectivity
(Greig et al., 2013; Govidan and Jabaudon, 2017). TC axons from
the VPM preferentially target layer 4 spiny stellate neurons (Simi
and Studer, 2018). Changes in the laminar position of layer 4
neurons as a result of migration defects does not alter this prefer-
ential targeting. For example, in the reeler mouse, different types
of cortical neurons are intermingled in a chaotic fashion because
the normal inside out migration of cortical neurons is disturbed.
Despite the shuffling of cortical neurons, TC axons recognize
stellate neurons, target them, and form rudimentary barrel-like
patterns. More importantly, whisker stimulation evokes activity
in somatotopically organized barrel columns (for review, see
Guy and Staiger, 2017). Conversely, mutations of transcription
factors that alter the identity of cortical neurons, and of layer 4
neurons in particular, cause alterations in TC axon branching
and formation of barrel patterns. The first example of such alter-
ations was in cortex-specific deletion of the transcription factor
Lhx2. TC axons were directed to the appropriate cortical region
but did not form barrels (Shetty et al., 2013; Wang et al., 2017).
A somewhat similar phenotype was recently observed in a cor-
tex-specific deletion of the transcription factor Rora, which is
selectively expressed in layer 4 (Vitalis et al., 2018). Lhx2 and
RORa control the expression of several guidance molecules,
such as semaphorin7a and EphrinA5, that are expressed in layer
4 neurons and are important in the control of terminal branch-
ing of TC axons (Uziel et al., 2008; Carcea et al., 2014). Finally, a
more severe disorganization of TC axons and complete disrup-
tion of the sensory map were noted in mutants of other tran-
scription factors, such as Ctip1-KO mice (Greig et al., 2016).
Ctip1- KO neurons were nonpermissive to TCA ingrowth but
permissive to cortical callosal projections. Overall, these results
indicate that molecular recognition and attraction cues are
guided by timely and coordinated expression of transcription
factors in thalamic and layer 4 neurons (Fig. 4).

Spontaneous activity in developing neural circuits of the
whisker-barrel system
Mice and rats do not start whisking until the second postnatal
week; but as the pups huddle, suckle, and move about, their
snouts are stimulated. Trimming of whiskers, even at such early
stages, causes behavioral alterations (Arakawa and Erzurumlu,
2015). Thus, even without whisking, passive tactile stimulation
of whiskers is meaningful to the developing mouse brain.
Indeed, more and more studies are finding that whisker deflec-
tions during early development evoke cortical activity, and these
can be synchronized with spontaneous activity in thalamic
neurons (Minlebaev et al., 2011; Akhmetshina et al., 2016).
Moreover, spontaneous whisker movements in neonates, even
while sleeping, can drive cortical activity (Khazipov et al., 2004;
Tiriac et al., 2012). Extracellular and whole-cell recordings from
the barrel cortex of neonatal rat pups revealed that there is a low
level of tuning of presumptive barrel neurons to the principal
whisker as early as PND0-PND1, before the barrels as neuronal
clusters form (Mitrukhina et al., 2015). The same study further
showed that a functional segregated whisker map emerges from
PND2-PND3, in which individual neurons show preferential sin-
gle whisker tuning.

Recently, Mizuno et al. (2018) adopted an elaborate strategy
to image activity of layer 4 neurons in vivo in neonatal mice.
They generated transgenic mice in which TC axons express RFP
under control of the serotonin transporter promoter, which
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labels these axons as described above to visualize barrel patterns,
and they used in utero electroporation to express GCaMp6s in
layer 4 neurons. They then analyzed spontaneous activity in rela-
tion to the barrels. They found that layer 4 neurons in the same
barrel fire synchronously without peripheral stimulation, which
the authors called “patchwork-type” spontaneous activity (Mizuno
et al., 2018). Thus, even in the absence of peripheral sensory inputs,
developing barrel neurons exhibit spontaneous correlated activity in
a patterned ensemble.

Critical-period plasticity
Original studies on the barrel cortex (discussed earlier in this
review) revealed that neonatal cautery of middle-row whisker

follicles (row C) leads to shrinkage of the row C barrels into a
thin, cigar-shaped band, and enlargement of barrels in neighbor-
ing rows B and D (Van der Loos and Woolsey, 1973; Woolsey
and Wann, 1976; Belford and Killackey, 1979; Killackey and
Belford, 1979; Woolsey et al., 1979). This effect occurs only if the
follicle damage is done during the first few days after birth.
Woolsey referred to this period as the “critical period” (Woolsey
et al., 1979), whereas Belford and Killackey (1980) chose the
term “sensitive period.” In a review of critical, sensitive, vulnera-
ble, and optimal periods in development, Erzurumlu and
Killackey (1982b) pointed out: “The conceptual difference
between the terms critical period and sensitive period is a very
important one. The first denotes a period during which the pres-
ence of certain critical conditions is necessary for the nervous

Figure 4. Diagram of the TC pathway and barrel formation in mice. Waves of calcium signals in the embryonic thalamus, schematically illustrated by graded colors, are suggested to corre-
spond to a somatotopic connectivity between the thalamus and barrel cortex, before sensory input is present. Without these waves, barrel cortex becomes hyperexcitable and does not develop
columnar and barrel organization (Antón-Bolaños et al., 2019). Developing TC axons are guided to cortex through multiple molecular guidance cues, some attractive and some repulsive
(Antón-Bolaños et al., 2018). Morphogens and signaling molecules set up areal specification of the neocortex into primary sensory, motor, and association cortex areas (Fukuchi-
Shimogori and Grove, 2001; Assimacopoulos et al., 2012; Zembrzycki et al., 2013, 2015; Stocker and O’Leary, 2016). In the developing barrel cortex, a patchwork of spontaneous activity
corresponds to barrels at the time of their formation (Mizuno et al., 2018). Layer- and projection-type-specific identity of neocortical neurons is determined by their time of differentia-
tion and specific transcription factors (Greig et al., 2013; Govidan and Jabaudon, 2017). Transcription factor RORa is cell-autonomously required in the thalamus for clustering of TC
axons and dendritic maturation of layer 4 neurons in the barrel cortex (Vitalis et al., 2018). Dendritic orientation of barrel cells is controlled by the BTBD3 transcription factor (Matsui
et al., 2013), and BTBD3 appears to be controlled by the transcription factor Lhx2 (Wang et al., 2017). So, transcription factors play multiple roles from cell specification to dendritic
orientation in the barrel cortex.
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system to develop normally and the other
to a time during which damage to the
nervous system can lead to alterations or
reorganization of the system” (p. 208).
The term “critical period”migrated to the
whisker-barrel system from early monoc-
ular deprivation studies in the visual sys-
tem (Wiesel and Hubel, 1963). In visual
system critical-period plasticity, visual
cortex is selectively deprived from inputs
coming from one eye, without any retinal
damage. In contrast, early injury to the
whisker follicles or the infraorbital nerve,
which innervates all the whisker follicles,
interferes with the normal wiring of the
central circuits. Despite emphasis on these
fundamental differences between the two
paradigms, the term “critical period”
became more widely used in the field.

In pioneering experiments, Belford
and Killackey (1980) concluded that the
system was “sensitive” to follicle damage
up to PND3 at all three stations: the
brainstem, thalamus, and cortex in rats.
This diverged from the conclusions of the
Woolsey group of different “critical peri-
ods” for each station: the cortical one closing at PND6 and the
thalamic one at PND4 in mice (Woolsey and Wann, 1976;
Durham and Woolsey, 1984; Woolsey et al., 1979). Later studies
(as discussed below) confirmed that, in both the rat and the
mouse, the sensitive or critical period for anatomic plasticity
closes by PND4.

To date, there is no clear understanding of what closes the
critical period of morphologic plasticity induced in the rodent
brain by whisker follicle damage. Several studies suggested that
the barrel cortex critical period is tied to a developmental switch
of cortical and thalamic expression of NMDA receptor subunits
(Crair and Malenka, 1995; Celikel et al., 2004; Liu et al., 2004;
Daw et al., 2006; Itami and Kimura, 2012; Itami et al., 2016).
Curiously, however, a developmental switch in NMDA receptor
NR2A/NR2B subunits does not occur in the developing trigemi-
nal principal sensory nucleus in the brainstem, where plasticity
resulting from follicle damage should first take place (Lo and
Zhao, 2011). Furthermore, in NR2A KO mice, NMDA subunit
composition and kinetics remain immature past the end of the
critical period, but there is no extension in the closure of the crit-
ical period (Lu et al., 2001).

An early pharmacological blockade study led to the conclu-
sion that NMDA receptors play an important role in determin-
ing the duration of the plasticity period in the rat barrel cortex
(Schlaggar et al., 1993). However, a role for NMDA receptors in
closing the plasticity period in barrel cortex was not confirmed
in NMDA receptor KO mice (Datwani et al., 2002a). Thus, avail-
able data rule out an essential role for NMDA receptors in
critical-period plasticity, at least during the developmental, mor-
phologic critical period, which ends by PND4 in mice, even
when mice are prematurely born (Toda et al., 2013). Despite the
negative findings from KO mice with nonfunctional NMDA
receptors, studies of the critical period in the barrel cortex
expanded to explore processes that typically depend on NMDA
receptors, including LTP, LTD, spike-timing-dependent plastic-
ity, and expression of silent synapses.

Maoa KO mice allowed a different approach to test whether
barrel cortex critical-period plasticity could be extended by delay-
ing TC terminal patterning and barrel formation (Rebsam et
al., 2005). In Maoa KO mice, excess 5-HT blocks patterning of
TC axon terminals into whisker-specific patterns (Cases et al.,
1996). Pharmacological treatment to reduce 5-HT levels per-
mits formation of TC axon terminal patches. Rebsam et al.
(2005) took this approach and delayed TC axon terminal patch
formation by 3 d, and tested whisker lesion-induced plasticity.
They found that, even when barrel formation is delayed by 3 d,
the closure of whisker follicle injury-induced plasticity was
unchanged (Fig. 5). These findings were interpreted as evidence
favoring closure of the critical period in subcortical structures.

Overall, the factors governing the duration and expandabil-
ity of the critical window during which the system is sensitive
to peripheral damage are still unknown.

Other studies searched for critical periods in the true sense of
sensory input deprivation, akin to visual system monocular de-
privation, experimentally induced strabismus, or amblyopia.
Most of these were done in rats by trimming all of the whiskers
close to the fur, sparing a single whisker, leaving a pair of
whiskers, or a mosaic of whiskers. They found expansion of the
receptive fields of the barrel cells corresponding to the spared
whiskers (Land and Simons, 1985; Fox, 1992, 2002; Diamond et
al., 1994; Wallace and Fox, 1999; Trachtenberg et al., 2002; Allen
et al., 2003). Experience-dependent cortical plasticity studies
revealed multiple critical periods. More recent studies are
expanding the concept of critical periods and barrel cortex plas-
ticity to cellular and molecular levels involving neurons, glia, and
endothelial cells (and adaptive changes at the molecular levels)
(Kole et al., 2018).

Collectively, the above documented findings, and several
others, are pointing to different forms of plasticity, sensitive peri-
ods, and critical periods during which damage to the sensory pe-
riphery or altered sensory experience along the whisker-barrel
pathway can shape the morphology and function of cortical cir-
cuits throughout life.

Figure 5. Developmental critical-period plasticity. Plasticity induced by row C lesion at three postnatal ages in two lines
of WT and two lines of transgenic mice, one without functional NMDA receptors in the cortex and the other without monoa-
mine oxidase A. Row C whisker-follicle lesions led to shrinkage of the row C barrels in the cortex and expansion of the neigh-
boring rows B and D barrels, clearly noticeable by visual inspection without any quantification. Lack of functional NMDA
receptors in the cortex does not change the duration of the critical period. That critical-period plasticity ends at P3, even in
MaoA KO mice, when barrel formation in the cortex is delayed. Figure compiled from Datwani et al. (2002b) and Rebsam et
al. (2005). Reprinted with permission from Rebsam et al. (2005).
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Concluding remarks and future directions
Half a century of research on the rodent barrel cortex brought us
amazing insights into cellular and molecular mechanisms of neu-
ral development and plasticity. What started with simple Nissl
stains and crude fiber tracings evolved into finer and finer analy-
ses as new techniques got introduced. Many studies in the field
of development have used the rodent whisker-barrel pathway as
a model system to study axon-pathfinding with a strong focus on
TC (Antón-Bolaños et al., 2019) and tactile sensory circuits
(Iwasato and Erzurumlu, 2018). Other developmental studies
made use of the exquisite patterning of neurons and TC axons in
the cortex to disentangle the mechanisms underlying activity-de-
pendent remodeling of axons and dendrites (Erzurumlu and
Gaspar, 2012) and the rules of cortical area specification and pat-
terning (Simi and Studer, 2018). Manipulation of the mouse ge-
nome played a major role in this respect. Mouse genetics that
initially started with a crude and labor-intensive approach in
Lausanne in the late 1970s flourished with generation of numer-
ous transgenic mouse lines. Molecular genetics allowed deleting
or introducing genes in the different relays of the whisker-to-bar-
rel pathway and thus identified transcription factors, neurotrans-
mitters, and guidance molecules that are required for barrel
formation. In the field of sensory physiology, the rodent barrel
cortex took over the studies investigating many forms of plastic-
ity, which were traditionally done in the visual system. Advances
in optogenetics and in vivo imaging of neural activity in awake
and behaving mice have found fertile ground for application in
the barrel cortex to explore the underpinnings of sensory proc-
essing and plasticity. As our technology toolbox gets richer, bar-
rel cortex will undoubtedly serve as a model for many years to
come.

Some outstanding questions in the field of development still
remain unanswered. The nature of the signal(s) derived from the
sensory receptors that instructs a “one-to-one” mapping of indi-
vidual whiskers along the trigeminal pathway (including when
the routing of the axons is derailed) remains unknown. Despite
five decades of research, we still do not know why inputs derived
from one whisker cosegregate all along the sensory pathway and
what could be the functional role of this discontinuous topo-
graphical organization for perception. Indeed, sensing the envi-
ronment with whiskers implies an integration of signals rather
than single whisker processing. The morphologic differences in
barrel organization as cellular aggregates with hollow centers
(mice) and cell-dense centers (rats) do not seem to matter much
for whisker-sensory behaviors, as long as whisker-specific segre-
gation of TC axons couples with aggregates of postsynaptic layer
4 cells. On the other hand, when the barrel patterning is dimin-
ished or absent as in Ac1 KO, thalamus-specific Ac1 or Grin1
KOs, and in mice with a bifacial map with reduced barrel sizes
for ipsilateral and contralateral whisker representations, whisker-
dependent sensory discrimination and performance become
impaired (Arakawa et al., 2014a,b; Tsytsarev et al., 2017).

A somewhat related question, which is now being actively
explored, is how the segregated sensory inputs arriving to one
barrel become distributed to other neurons of the sensory cortex
(Egger et al., 2020) and other cortical and subcortical structures
(Aronoff et al., 2010; Yamashita et al., 2018) to extract and syn-
thesize/integrate useful information for sensorimotor processing
(Petersen, 2019) and complex behavior (Yang et al., 2018).

Finally, the mouse barrel cortex is making advances in under-
standing cellular and molecular mechanisms underlying sen-
sory and cognitive deficits associated with neurodevelopmental

disorders, such as autism spectrum disorders, fragile X syn-
drome, and Rett syndrome, and diseases of aging, such as
Alzheimer’s disease and related dementias, as mouse models
with associated genetic defects are made available (Crouzin et al.,
2013; Beker et al., 2016; Lo et al., 2016a,b; Maatuf et al., 2016; Lee
et al., 2017; Lo and Erzurumlu, 2018; Booker et al., 2019;
Domanski et al., 2019). Tactile sensory abnormalities or altered
sensitivities are common features of both neurodevelopmental
disorders and dementias. Cortical circuits that connect the pri-
mary somatosensory areas with frontal cortical association areas
are gaining increased interest in understanding how these cir-
cuits subserving sensory perception and cognition are altered at
the molecular and circuit level in mouse models of these condi-
tions. Clearly, new insights will come out of these studies in the
near future.
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