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We review and synthesize recent neurophysiological studies of decision making in humans and nonhuman
primates. From these studies, the basic outline of the neurobiological mechanism for primate choice is begin-
ning to emerge. The identified mechanism is now known to include a multicomponent valuation stage, imple-
mented in ventromedial prefrontal cortex and associated parts of striatum, and a choice stage, implemented
in lateral prefrontal and parietal areas. Neurobiological studies of decision making are beginning to enhance
our understanding of economic and social behavior as well as our understanding of significant health disor-
ders where people’s behavior plays a key role.
Introduction
Only seven years have passed since Neuron published a special

issue entitled ‘‘Reward and Decision,’’ an event that signaled

a surge of interest in the neural mechanisms underlying decision

making that continues to this day (Cohen and Blum, 2002). At the

time, many scholars were excited that quantitative formal models

of choice behavior—from economics, evolutionary biology,

computer science, and mathematical psychology—were begin-

ning to provide a fruitful framework for new and more detailed

investigations of the neural mechanisms of choice. To borrow

David Marr’s (1982) famous typology for computational studies

of the brain, decision scholars seemed for the first time poised

to investigate decision making at the theoretical, algorithmic,

and implementation levels simultaneously.

Since that time, hundreds of research papers have been

published on the neural mechanisms of decision making, at least

two new societies dedicated to the topic have been formed (the

Society for Neuroeconomics and the Association for NeuroPsy-

choEconomics), and a basic textbook for the field has been

introduced (Glimcher et al., 2009). In this review, we survey

some of the scientific progress that has been made in these

past seven years, focusing specifically on neurophysiological

studies in primates and including closely related work in humans.

In an effort to achieve brevity, we have been selective. Our aim is

to provide one synthesis of the neurophysiology of decision

making, as we understand it. While many issues remain to be

resolved, our conviction is that the available data suggest the

basic outlines of the neural systems that algorithmically produce

choice. Although there are certainly vigorous controversies, we

believe that most scientists in the field would exhibit consensus

over (at least) the terrain of contemporary debate.

The Basic Mechanism
Any neural model of decision making needs to answer two key

questions. First, how are the subjective values of the various

options under consideration learned, stored, and represented?

Second, how is a single highly valued action chosen from among

the options under consideration to be implemented by the motor
circuitry? Below, we review evidence that we interpret as sug-

gesting that valuation involves the ventromedial sectors of the

prefrontal cortex and associated parts of the striatum (likely as

a final common path funneling information from many ante-

cedent areas), while choice involves lateral prefrontal and pari-

etal areas traditionally viewed as intermediate regions in the

sensory-motor hierarchy. Based on these data, we argue that

a ‘‘basic model’’ for primate decision making is emerging from

recent investigations, which involves the coordinated action of

these two circuits in a two-stage algorithm.

Before proceeding, we should be clear about the relationship

between this neurophysiological model of choice and the very

similar theoretical models in economics from which it is derived.

Traditional economic models aim only to predict (or explain) an

individual’s observable choices. They do not seek to explain

the (putatively unobservable) process by which those choices

are generated. In the famous terminology of Milton Friedman,

traditional economic models are conceived of as being ‘‘as if’’

models (Friedman, 1953). Classic proofs in utility theory (i.e.,

Samuelson, 1937), for example, demonstrate that any decision

maker who chooses in a mathematically consistent fashion

behaves as if they had first constructed and stored a single list

of the all possible options ordered from best to worst, and then

in a second step had selected the highest ordered of those avail-

able options. Friedman and nearly all of the neoclassical econo-

mists who followed him were explicit that the concept of utility

was not meant to apply to anything about the algorithmic or

implementation levels. For Friedman, and for many contempo-

rary economists (i.e., Gul and Pesendorfer, 2008), whether or

not there are ‘‘neurophysiological correlates of utility’’ is, by

construction, irrelevant.

Neurophysiological models, of course, aim to explain the

mechanisms by which choices are generated, as well as the

choices themselves. These models seek to explain both behavior

and its causes and employ constraints at the algorithmic level to

validate the plausibility of behavioral predictions. One might call

these models, which are concerned with algorithm and imple-

mentation as well as with behavior, because models. Although
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a fierce debate rages in economic circles about the validity and

usefulness of because models, we take as a given for the

purposes of this review that describing the mechanism of primate

(both human and nonhuman) decision making will yield new

insights into behavior, just as studies of the primate visual system

have revolutionized our understanding of perception.

Stage 1: Valuation
Ventromedial Prefrontal Cortex and Striatum: A Final

Common Path

Most decision theories—from expected utility theory in

economics (von Neumann and Morgenstern, 1944) to prospect

theory in psychology (Kahneman and Tversky, 1979) to rein-

forcement learning theories in computer science (Sutton and

Barto, 1998)—share a core conclusion. Decision makers inte-

grate the various dimensions of an option into a single measure

of its idiosyncratic subjective value and then choose the option

that is most valuable. Comparisons between different kinds of

options rely on this abstract measure of subjective value,

a kind of ‘‘common currency’’ for choice. That humans can in

fact compare apples to oranges when they buy fruit is evidence

for this abstract common scale.

At first blush, the notion that all options can be represented

on a single scale of desirability might strike some as a peculiar

idea. Intuitively it might feel like complicated choices among

objects with many different attributes would resist reduction to

a single dimension of desirability. However, as Samuelson

showed over half a century ago (Samuelson, 1937), any individual

whose choices can be described as internally consistent can be

perfectly modeled by algorithms that employ a single common

scale of desirability. If someone selects an apple when they

could have had an orange, and an orange when they could

have had a pear, then (assuming they are in the same state)

they should not select a pear when they could have had an ap-

ple instead. This is the core notion of consistency, and when

people behave in this manner, we can model their choices as

arising from a single, consistent ‘‘utility’’ ordering over all possible

options.

For traditional economic theories, however, consistent deci-

sion makers only choose as if they employed a single hidden

common currency for comparing options. There was no claim

when these theories were first advanced that subjective repre-

sentations of value were used at the algorithmic level during

choice. However, there is now growing evidence that subjective

value representations do in fact play a role at the neural algo-

rithmic level and that these representations are encoded primarily

in ventromedial prefrontal cortex and striatum (Figure 1).

One set of studies has documented responses in orbitofrontal

cortex related to the subjective values of different rewards, or in

the language of economics, ‘‘goods.’’ Padoa-Schioppa and

Assad (2006) recorded from area 13 of the orbitofrontal cortex

while monkeys chose between pairs of juices. The amount of

each type of juice offered to the animals varied from trial to trial,

and the types of juices offered changed across sessions. Based

on each monkey’s actual choices, they calculated a subjective

value for each juice reward, based on type and quantity of juice,

which could explain these choices as resulting from a common

value scale. They then searched for neurons that showed
734 Neuron 63, September 24, 2009 ª2009 Elsevier Inc.
evidence of this hypothesized common scale for subjective

value. They found three dominant patterns of responding, which

accounted for 80% of the neuronal responses in this region. First

and most importantly they identified offer value neurons, cells

with firing rates that were linearly correlated with the subjective

value of one of the offered rewards, as computed from behavior

(Figure 2). Second, they observed chosen value neurons, which

tracked the subjective value of the chosen reward in a single

common currency that was independent of type of juice. Finally,

they observed taste neurons, which showed a categorical

response when a particular juice was chosen. All of these

responses were independent of the spatial arrangement of the

stimuli and of the motor response produced by the animal to

make its choice. Perhaps unsurprisingly, offer value and chosen

value responses were prominent right after the options were pre-

sented and again at the time of juice receipt. Taste responses, in

contrast, occurred primarily after the juice was received.

Based on their timing and properties, these different responses

likely play different roles during choice. Offer value signals could

serve as subjective values, in a single common neuronal

currency, for comparing and deciding between offers. They are

exactly the kind of value representation posited by most decision

theories, and they could be analogous to what economists

call ‘‘utilities’’ (or, if they also responded to probabilistically

delivered rewards to ‘‘expected utilities’’) and to what psycholo-

gists call ‘‘decision utilities.’’ Chosen values, by contrast, can

only be calculated after a choice has been made and, thus,

could not be the basis for a decision. As discussed in the section

below, however, learning the value of an action from experience

depends on being able to compare two quantities—the
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Figure 1. Valuation Circuitry
Diagram of a macaque brain, highlighting in black the regions discussed as
playing role in valuation. Other regions are labeled in gray.
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Figure 2. An Example Orbitofrontal Neuron that Encodes Offer Value, in a Menu-Invariant and Therefore Transitive Manner
(A) In red is the firing rate of the neuron (±SEM), as a function of the magnitude of the two juices offered, for three different choice pairs. In black is the percentage
of time the monkey chose the first offer.
(B) Replots firing rates as a function of the offer value of juice C, demonstrating that this neuron encodes this value in a common currency in a manner that is
independent of the other reward offered. The different symbols and colors refer to data from the three different juice pairs, and each symbol represents one trial
type. Reprinted with permission from Padoa-Schioppa and Assad (2008).
forecasted value of taking an action and the actual value experi-

enced when that action was taken. Chosen value responses in

the orbitofrontal cortex may then signal the forecast, or for

neurons active very late in the choice process the experienced,

subjective value from that choice (see also Takahashi et al.,

2009, for discussion of this potential function of orbitofrontal

value representations).

In a follow-up study, Padoa-Schioppa and Assad (2008)

extended their conclusion that these neurons provide utility-

like representations. They demonstrated that orbitofrontal

responses were ‘‘menu invariant’’—that activity was internally

consistent in the same way that the choices of the monkeys

were internally consistent. In that study, choice pairs involving

three different kinds of juice were interleaved from trial to trial.

Behaviorally, the monkeys’ choices obeyed transitivity: if the

animal preferred apple juice over grape juice, and grape juice

over tea, then he also preferred apple juice over tea. They

observed the same three kinds of neuronal responses as in

their previous study, and these responses did not depend on

the other option offered on that trial (Figure 2). For example,

a neuron that encoded the offer value of grape juice did so in

the same manner whether the other option was apple juice or

tea. This independence can be shown to be required of utility-

like representations (Houthakker, 1950) and thus strengthens

the conclusion that these neurons may encode a common

currency for choice.

Importantly, Padoa-Schioppa and Assad (2008) distinguished

the ‘‘menu invariance’’ that they observed, where neuronal

responses do not change from trial to trial as the other juice

offered changes, from a longer-term kind of stability they refer

to as ‘‘condition invariance.’’ Tremblay and Schultz’s (1999)

data suggest that orbitofrontal responses may not be ‘‘condition

invariant,’’ since these responses seem to adjust to the range of

rewards when this range is stable over long blocks of trials. As

Padoa-Schioppa and Assad (2008) argued, such longer-term

rescaling would serve the adaptive function of allowing orbito-

frontal neurons to adjust across conditions so as to encode value

across their entire dynamic range. However, in discussing this
study and the ones below, we focus primarily on the question

of whether neuronal responses are ‘‘menu invariant,’’ i.e.,

whether they adjust dynamically from trial to trial depending on

what other options are offered.

Another set of studies from two labs has documented similar

responses in the striatum, the second area that appears to repre-

sent the subjective values of choice options. Lau and Glimcher

(2008) recorded from the caudate nucleus while monkeys per-

formed an oculomotor choice task (Figure 3A). The task was

based on the concurrent variable-interval schedules used to

study Herrnstein’s matching law (Herrnstein, 1961; Platt and

Glimcher, 1999; Sugrue et al., 2004). Behaviorally, the monkeys

dynamically adjusted the proportion of their responses to each

target to match the relative magnitudes of the rewards earned

for looking at those targets. Recording from phasically active

striatal neurons (PANs), they found three kinds of task-related

responses closely related to the orbitofrontal signals of Padoa-

Schioppa and Assad (2006, 2008): action value neurons, which

tracked the value of one of the actions, independent of whether

it was chosen; chosen value neurons, which tracked the value of

a chosen action; and choice neurons, which produced a categor-

ical response when a particular action was taken. Action value

responses occurred primarily early in the trial, at the time of the

monkey’s choice, while chosen value responses occurred later

in the trial, near the time of reward receipt.

Samejima and colleagues (2005) provided important impetus

for all of these studies when they gathered some of the first

evidence that the subjective value of actions was encoded on

a common scale (Figure 3B). In that study, monkeys performed

a manual choice task, turning a lever leftward or rightward to

obtain rewards. Across different blocks, the probability that

each turn would be rewarded with a large (as opposed to a small)

magnitude of juice was changed. Recording from the putamen,

they found that one-third of all modulated neurons tracked

action value. This was almost exactly the same percentage of

action value neurons that Lau and Glimcher (2008) later found

in the oculomotor caudate. Samejima and colleagues’ design

also allowed them to show that these responses did not depend
Neuron 63, September 24, 2009 ª2009 Elsevier Inc. 735
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on the value associated with the other action. For example,

a neuron that tracked the value of a right turn would always

exhibit an intermediate response when that action yielded a

large reward with 50% probability, independent of whether

the left turn was more (i.e., 90% probability) or less (i.e., 10%

probability) valuable. This is critical because it means that the

striatal signals, like the signals in orbitofrontal cortex, likely

show the kind of consistent representation required for transitive

behavior.

Thus, the responses in the caudate and putamen in these

two studies mirror those found in orbitofrontal cortex, except

anchored to the actions produced by the animals rather than

to a more abstract goods-based framework as observed in

orbitofrontal cortex. One key question raised by these findings

is the relationship between the action-based value responses

observed in the striatum and the goods-based value responses

observed in the orbitofrontal cortex. The extent to which these

representations are independent has received much attention

recently. For example, Horwitz and colleagues (2004) have

shown that asking monkeys to choose between ‘‘goods’’ that

map arbitrarily to different actions from trial to trial leads almost

instantaneously to activity in action-based choice circuits.

Findings such as these suggest that action-based and goods-

based representations of value are profoundly interconnected,
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Figure 3. Two Example Striatal Neurons that Encode Action Value
(A) Caudate neuron that fires more when a contralateral saccade is more valu-
able (blue) compared to less valuable (yellow), independently of which
saccade the animal eventually chooses. c denotes the average onset of the
saccade cue, and the thin lines represent ±1 SEM. Reprinted with permission
from Lau and Glimcher (2008).
(B) Putamen neuron that encodes the value of a rightward arm movement (QR),
independent of the value of a leftward arm movement (QL). Reprinted with
permission from Samejima et al. (2005).
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although we acknowledge that this view remains controversial

(Padoa-Schioppa and Assad, 2006, 2008).

Human imaging studies have provided strong converging

evidence that ventromedial prefrontal cortex and the striatum

encode the subjective value of goods and actions. While it is

difficult to determine whether the single-unit neurophysiology

and fMRI studies have identified directly homologous subregions

of these larger anatomical structures in the two different species,

there is surprising agreement across the two methods concern-

ing the larger anatomical structures important in valuation. As

reviewed elsewhere, dozens of studies have demonstrated

reward responses in these regions that are consistent with

tracking forecasted or experienced value, which might play

a role in value learning (Delgado, 2007; Knutson and Cooper,

2005; O’Doherty, 2004). Here, we will focus on several recent

studies that identified subjective value signals specific to the

decision process. Two key design aspects that allow this identi-

fication in these particular studies are (1) no outcomes were

experienced during the experiment, so that decision-related

signals could be separated from learning-related signals as

much as possible, and (2) there was a behavioral measure of

the subject’s preference, which allowed subjective value to be

distinguished from the objective characteristics of the options.

Plassmann and colleagues (2007) scanned hungry subjects

bidding on various snack foods (Figure 4). They used an auction

procedure where subjects were strongly incentivized to report

what each snack food was actually worth to them. They found

that BOLD activity in medial orbitofrontal cortex was correlated

with the subject’s subjective valuation of that item (Figures 4B

and 4C). Hare and colleagues have now replicated this finding

twice, once in a different task where the subjective value of the

good could be dissociated from other possible signals (Hare

et al., 2008) and again in a set of dieting subjects where the

subjective value of the snack foods was affected by both taste

and health concerns (Hare et al., 2009).

In a related study, Kable and Glimcher (2007) examined partic-

ipants choosing between immediate and delayed monetary

rewards. The immediate reward was fixed, while both the magni-

tude and receipt time of the delayed reward varied across trials.

From each subject’s choices, an idiosyncratic discount function

was estimated that described how the subjective value of money

declined with delay for that individual. In medial prefrontal cortex

and ventral striatum (among other regions), BOLD activity was

correlated with the subjective value of the delayed reward as

it varied across trials. Furthermore, across subjects, the neuro-

metric discount functions describing how neural activity in these

regions declined with delay matched the psychometric discount

functions describing how subjective value declined with delay

(Figure 5). In other words, for more impulsive subjects, neural

activity in these regions decreased steeply as delay increased,

while for more patient subjects this decline was less pro-

nounced. These results suggest that neural activity in these

regions encodes the subjective value of both immediate and de-

layed rewards in a common neural currency that takes into

account the time at which a reward will occur.

Two recent studies have focused on decisions involving

monetary gambles. These studies have demonstrated that

modulation of a common value signal could also account for
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loss aversion and ambiguity aversion, two more recently identi-

fied choice-related behaviors that suggest important refine-

ments to theoretical models of subjective value encoding (for

a review of these issues see Fox and Poldrack, 2009). Tom

and colleagues (2007) scanned subjects deciding whether to

accept or reject monetary lotteries in which there was a 50/50

chance of gaining or losing money. They found that BOLD

activity in ventromedial prefrontal cortex and striatum increased

with the amount of the gain and decreased with the amount

of the loss. Furthermore, the size of the loss effect relative to

the gain effect was correlated with the degree to which the

potential loss affected the person’s choice more than the poten-

tial gain. Activity decreased faster in response to increasing
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Figure 4. Orbitofrontal Cortex Encodes the
Subjective Value of Food Rewards
in Humans
(A) Hungry subjects bid on snack foods, which
were the only items they could eat for 30 min after
the experiment. At the time of the decision, medial
orbitofrontal cortex (B) tracked the subjective
value that subjects placed on each food item.
Activity here increased as the subjects’ willingness
to pay for the item increased (C). Error bars denote
standard errors. Reprinted with permission from
Plassmann et al. (2007).

losses for more loss-averse subjects.

Levy and colleagues (2007) examined

subjects choosing between a fixed cer-

tain amount and a gamble that was either

risky (known probabilities) or ambiguous

(unknown probabilities). They found that

activity in ventromedial prefrontal cortex and striatum was corre-

lated with the subjective value of both risky and ambiguous

options.

Midbrain Dopamine: A Mechanism for Learning

Subjective Value

The previous section reviewed evidence that ventromedial

prefrontal cortex and striatum encode the subjective value of

different goods or actions during decision making in a way that

could guide choice. But how do these subjective value signals

arise? One of the most critical sources of value information is

undoubtedly past experience. Indeed, in physiological experi-

ments, animal subjects always have to learn the value of different

actions over the course of the experiment—for these subjects,
Neuron 63, September 24, 2009 ª2009 Elsevier Inc. 737
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the consequences of each action cannot be communicated

linguistically. Although there are alternative viewpoints (Dommett

et al., 2005; Redgrave and Gurney, 2006), unusually solid

evidence now indicates that dopaminergic neurons in the

midbrain encode a teaching signal that can be used to learn

the subjective value of actions (for a detailed review, including

a discussion of how nearly all of the findings often presented

as discrepant with early versions of the dopaminergic teaching

signal hypothesis have been reconciled with contemporary

versions of the theory, see Niv and Montague, 2009). Indeed,

these kinds of signals can be shown to be sufficient for learning

the values of different actions from experience. Since these

same dopaminergic neurons project primarily to prefrontal and

striatal regions (Haber, 2003), it seems likely that these neurons

play a critical role in subjective value learning.

The computational framework for these investigations of

dopamine and learning comes from reinforcement learning

theories developed in computer science and psychology over

the past two decades (Niv and Montague, 2009). While several

variants of these theories exist, in all of these models, subjective

values are learned through iterative updating based on experi-

ence. The theories rest on the idea that each time a subject

experiences the outcome of her choice, an updated value

estimate is calculated from the old value estimate and a reward

prediction error—the difference between the experienced

outcome of an action and the outcome that was forecast. This

reward prediction error is scaled by a learning rate, which deter-

mines the weight given to recent versus remote experience.

Pioneering studies of Schultz and colleagues (1997) provided

the initial evidence that dopaminergic neurons encode a reward
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Figure 6. Dopaminergic Responses in
Monkeys and Humans
(A) An example dopamine neuron recorded in
a monkey, which responds more when the reward
received was better than expected.
(B) Firing rates of dopaminergic neurons track
positive reward prediction errors.
(C) Population average of dopaminergic responses
(n = 15) recorded in humans during deep-brain
stimulation (DBS) surgery for Parkinson’s disease,
showing increased firing in response to unex-
pected gains. The red line indicates feedback
onset.
(D) Firing rates of dopaminergic neurons depend
on the size and valence of the difference between
the received and expected reward. All error bars
represent standard errors.
Panels (A) and (B) reprinted with permission from
Bayer and Glimcher (2005), and panels (C) and
(D) reprinted with permission from Zaghloul et al.
(2009).

prediction error signal of the kind

proposed by a class of theories called

temporal-difference learning (TD-models;

Sutton and Barto, 1998). These studies

demonstrated that, during conditioning

tasks, dopaminergic neurons (1) re-

sponded to the receipt of unexpected

rewards, (2) responded to the first reliable

predictor of reward after conditioning, (3) did not respond to the

receipt of fully predicted rewards, and (4) showed a decrease in

firing when a predicted reward was omitted. Montague et al.

(1996) were the first to propose that this pattern of results could

be completely explained if the firing of dopamine neurons en-

coded a reward prediction error of the type required by TD-class

models. Subsequent studies, examining different Pavlovian

conditioning paradigms, demonstrated that the qualitative

responses of dopaminergic neurons were entirely consistent

with this hypothesis (Tobler et al., 2003; Waelti et al., 2001).

Recent studies have provided more quantitative tests of the

reward prediction error hypothesis. Bayer and Glimcher (2005)

recorded from dopaminergic neurons during an oculomotor

task, in which the reward received for the same movement varied

in a continuous manner from trial to trial. As is required by theory,

the response on the current trial was a function of an exponen-

tially weighted sum of previous rewards obtained by the monkey.

Thus, dopaminergic firing rates were linearly related to a model-

derived reward prediction error (Figures 6A and 6B). Interest-

ingly, though, this relationship broke down for the most negative

prediction error signals, although the implications of this last

finding have been controversial.

Additional studies have demonstrated that, when conditioned

cues predict rewards with different magnitudes or probabilities,

the cue-elicited dopaminergic response scales with magnitude

or probability, as expected if it represents a cue-elicited

prediction error (Fiorillo et al., 2003; Tobler et al., 2005). In

a similar manner, if different cues predict rewards after different

delays, the cue-elicited response decreases as the delay to

reward increases, consistent with a prediction that incorporates
738 Neuron 63, September 24, 2009 ª2009 Elsevier Inc.
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discounting of future rewards (Fiorillo et al., 2008; Kobayashi and

Schultz, 2008; Roesch et al., 2007).

Until recently, direct evidence regarding the activity of

dopaminergic neurons in humans has been scant. Imaging the

midbrain with fMRI is difficult for several technical reasons,

and the reward prediction error signals initially identified with

fMRI were located in the presumed striatal targets of the

dopaminergic neurons (McClure et al., 2003; O’Doherty et al.,

2003). However, D’Ardenne and colleagues (2008) recently

reported BOLD prediction error signals in the ventral tegmental

area using fMRI. They used a combination of small voxel sizes,

cardiac gating, and a specialized normalization procedure to

detect these signals. Across two paradigms using primary and

secondary reinforcers, they found that BOLD activity in the

VTA was significantly correlated with positive, but not negative,

reward prediction errors.

Zaghloul and colleagues (2009) reported the first electrophys-

iological recordings in human substantia nigra during learning.

These investigators recorded neuronal activity while individuals

with Parkinson’s disease underwent surgery to place electrodes

for deep-brain stimulation therapy. Subjects had to learn which

of two options provided a greater probability of a hypothetical

monetary reward, and their choices were fit with a reward predic-

tion model. In the subset of neurons that were putatively dopami-

nergic, they found an increase in firing rate for unexpected

positive outcomes, relative to unexpected negative outcomes,

while the firing rates for expected outcomes did not differ

(Figures 6C and 6D). Such an encoding of unexpected rewards

is again consistent with the reward prediction error hypothesis.

Pessiglione and colleagues (2006) demonstrated a causal role

for dopaminergic signaling in both learning and striatal BOLD

prediction error signals. During an instrumental learning para-

digm, they tested subjects who had received L-DOPA (a dopa-

mine precursor), haloperidol (a dopamine receptor antagonist),

or placebo. Consistent with other findings from Parkinson’s

patients (Frank et al., 2004), L-DOPA (compared to haloperidol)

improved learning to select a more rewarding option but did

not affect learning to avoid a more punishing option. In addition,

the BOLD reward prediction error in the striatum was larger for

the L-DOPA group than for the haloperidol group, and differ-

ences in this response, when incorporated into a reinforcement

learning model, could account for differences in the speed of

learning across groups.

Stage 2: Choice
Lateral Prefrontal and Parietal Cortex: Choosing Based

on Value

Learning and encoding subjective value in a common currency

is not sufficient for decision making—one action still needs to

be chosen from among the set of alternatives and passed to

the motor system for implementation. What is the process by

which a highly valued option in a choice set is selected and

implemented?

While we acknowledge that other proposals have been made

regarding this process, we believe that the bulk of the available

evidence implicates (at a minimum) the lateral prefrontal and

parietal cortex in the process of selecting and implementing

choices from among any set of available options. Some of the
best evidence has come from studies of a well-understood

model decision making system: the visuo-saccadic system of

the monkey. For largely technical reasons, the saccadic-control

system has been intensively studied over the past three decades

as a model for understanding sensory-motor control in general

(Andersen and Buneo, 2002; Colby and Goldberg, 1999). The

same has been true for studies of choice. The lateral intraparietal

area (LIP), the frontal eye fields (FEF), and the superior colliculus

(SC) comprise the core of a heavily interconnected network that

plays a critical role in visuo-saccadic decision making (Figure 7)

(Glimcher, 2003; Gold and Shadlen, 2007). The available data

suggest a parallel role in nonsaccadic decision making for the

motor cortex, the premotor cortex, the supplementary motor

area, and the areas in the parietal cortex adjacent to LIP.

At a theoretical level, the process of choice must involve

a mechanism for comparing two or more options and identifying

the most valuable of those options. Both behavioral evidence

and theoretical models from economics make it clear that this

process is also somewhat stochastic (McFadden, 1974). If two

options have very similar subjective values, the less-desirable

option may be occasionally selected. Indeed, the probability

that these ‘‘errors’’ will occur is a smooth function of the similarity

in subjective value of the options under consideration. How then

is this implemented in the brain?

Any system that performed such a comparison must be able to

represent the values of each option before a choice is made and

then must effectively pass information about the selected option,

but not the unselected options, to downstream circuits. In the

saccadic system, among the first evidence for such a circuit

came from the work of Glimcher and Sparks (1992), who
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essentially replicated in the superior colliculus Tanji and Evarts’

classic studies of motor area M1 (Tanji and Evarts, 1976). The

laminar structure of the superior colliculus employs a topo-

graphic map to represent the amplitude and direction of all

possible saccades. They showed that if two saccadic targets

of roughly equal subjective value were presented to a monkey,

then the two locations on this map corresponding to the two

saccades became weakly active. If one of these targets was

suddenly identified as having higher value, this led almost imme-

diately to a high-frequency burst of activity at the site associated

with that movement and a concomitant suppression of activity at

the other site. In light of preceding work (Van Gisbergen et al.,

1981), this led to the suggestion that a winner-take-all computa-

tion occurred in the colliculus that effectively selected one move-

ment from the two options for execution.

Subsequent studies (Basso and Wurtz, 1998; Dorris and

Munoz, 1998) established that activity at the two candidate

movement sites, during the period before the burst, was graded.

If the probability that a saccade would yield a reward was

increased, firing rates associated with that saccade increased,

and if the probability that a saccade would yield a reward was

decreased, then the firing rate was decreased. These observa-

tions led Platt and Glimcher (1999) to test the hypothesis, just

upstream of the colliculus in area LIP, that these premovement

signals encoded the subjective values of movements. To test

that hypothesis, they systematically manipulated either the prob-

ability that a given saccadic target would yield a reward or the

magnitude of reward yielded by that target. They found that firing

rates in area LIP before the collicular burst occurred were a nearly

linear function of both magnitude and probability of reward.

This naturally led to the suggestion that the fronto-parietal

network of saccade control areas formed, in essence, a set of

topographic maps of saccade value. Each location on these

maps encodes a saccade of a particular amplitude and direction,

and it was suggested that firing rates on these maps encoded

the desirability of each of those saccades. The process of

choice, then, could be reduced to a competitive neuronal mech-

anism that identified the saccade associated with the highest

level of neuronal activity. (In fact, studies in brain slices have

largely confirmed the existence of such a mechanism in the

colliculus—see for example Isa et al., 2004, or Lee and Hall,

2006.) Many subsequent studies have bolstered this conclusion,

demonstrating that various manipulations that increase (or

decrease) the subjective value of a given saccade also increase

(or decrease) the firing rate of neurons within the frontal-parietal
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LIP firing rates are greater when the larger magni-
tude reward is in the response field (n = 30) (A) but
are not affected when the magnitude of all rewards
are doubled (n = 22) (B). Adapted with permission
from Dorris and Glimcher (2004).

maps associated with that saccade

(Dorris and Glimcher, 2004; Janssen and

Shadlen, 2005; Kim et al., 2008; Leon

and Shadlen, 1999, 2003; Sugrue et al.,

2004; Wallis and Miller, 2003; Yang and

Shadlen, 2007). Some of these studies have discovered one

notable caveat to this conclusion, though. Firing rates in these

areas encode the subjective value of a particular saccade rela-

tive to the values of all other saccades under consideration

(Figure 8) (Dorris and Glimcher, 2004; Sugrue et al., 2004).

Thus, unlike firing rates in orbitofrontal cortex and striatum, firing

rates in LIP (and presumably other frontal-parietal regions

involved in choice rather than valuation) are not ‘‘menu

invariant.’’ This suggests an important distinction between

activity in the parietal cortex and activity in the orbitofrontal

cortex and striatum. Orbitofrontal and striatal neurons appear

to encode absolute (and hence transitive) subjective values.

Parietal neurons, presumably using a normalization mechanism

like the one studied in visual cortex (Heeger, 1992), rescale these

absolute values so as to maximize the differences between the

available options before choice is attempted.

At the same time that these studies were underway, a second

line of evidence also suggested that the fronto-parietal networks

participate in decision making, but in this case decision making

of a slightly different kind. In these studies of perceptual decision

making, an ambiguous visual stimulus was used to indicate

which of two saccades would yield a reward, and the monkey

was reinforced if he made the indicated saccade. Shadlen and

Newsome (Shadlen et al., 1996; Shadlen and Newsome, 2001)

found that the activity of LIP neurons early in this decision-

making process carried stochastic information about the likeli-

hood that a given movement would yield a reward. Subsequent

studies have revealed the dynamics of this process. During these

kinds of perceptual decision-making tasks, the firing rates of LIP

neurons increase as the evidence that a saccade into the

response field will be rewarded accrues. However, this increase

is bounded; once firing rates cross a maximal threshold, a

saccade is initiated (Churchland et al., 2008; Roitman and

Shadlen, 2002). Closely related studies in the frontal eye fields

lead to similar conclusions (Gold and Shadlen, 2000; Kim and

Shadlen, 1999). Thus, both firing rates in LIP and FEF and behav-

ioral responses in this kind of task can be captured by a race-to-

barrier diffusion model (Ratcliff et al., 1999).

Several lines of evidence now suggest that this threshold

represents a value (or evidence based) threshold for movement

selection (Kiani et al., 2008). When the value of any saccade

crosses that preset minimum, the saccade is immediately initi-

ated. Importantly, in the models derived from these data, the

intrinsic stochasticity of the circuit gives rise to the stochasticity

observed in actual choice behavior.
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These two lines of evidence, one associated with the work of

Shadlen, Newsome, and their colleagues and the other associ-

ated with our research groups, describe two classes of models

for understanding the choice mechanism. In reaction-time

tasks, the race-to-barrier model describes a situation in which

a choice is made as soon as the value of any action exceeds

a preset threshold (Figures 9A and 9B). In non-reaction time

economics-style tasks, a winner-take-all model describes the

process of selecting the option having the highest value from

a set of candidates. Wang and colleagues (Lo and Wang,

2006; Wang, 2008; Wong and Wang, 2006) have recently shown

that a single collicular or parietal circuit can be designed that

performs both winner-take-all and thresholding operations in

a stochastic fashion that depends on the inhibitory tone of the

network (Figure 9C). Their models suggest that the same mech-

anism can perform two kinds of choice—a slow competitive

winner-take-all process that can identify the best of the available

options and a rapid thresholding process that selects a single

movement once some preset threshold of value is crossed.

LIP, the superior colliculus, and the frontal eye fields therefore

seem to be part of a circuit that receives as input the subjective

value of different saccades and then, representing these as
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relative values, stochastically selects

from all possible saccades a single one

for implementation.

Open Questions and Current
Controversies
Above, we have outlined our conclusion

that, based on the data available today,

a minimal model of primate decision

making includes valuation circuits in

ventromedial prefrontal cortex and stria-

tum and choice circuits in lateral pre-

frontal and parietal cortex. However,

there are obviously many open questions

about the details of this mechanism, as

well as many vigorous debates that go

beyond the general outline just pre-

sented. With regard to valuation, some

of the important open questions concern

what all of the many inputs to the final

common path are (i.e., Hare et al.,

2009), how the function of ventromedial

prefrontal cortex and striatum might differ

(i.e., Hare et al., 2008), and how to best

define and delineate more specific roles for subcomponents of

these large multipart structures. In terms of value learning,

current work focuses on what precise algorithmic model of rein-

forcement learning best describes the dopaminergic signal (i.e.,

Morris et al., 2006), how sophisticated the expectation of the

future rewards that is intrinsic to this signal is, whether these

signals adapt to volatility in the environment as necessary for

optimal learning (i.e., Behrens et al., 2007), and how outcomes

that are worse than expected are encoded (i.e., Bayer et al.,

2007; Daw et al., 2002). In terms of choice, some of the important

open questions concern what modulates the state of the choice

network between the thresholding and winner-take-all mecha-

nisms, what determines which particular options are passed to

the choice circuitry, whether there are mechanisms for con-

structing and editing choice sets, how the time accorded to

a decision is controlled, and whether this allocation adjusts in

response to changes in the cost of ‘‘errors.’’

While space does not permit us to review all the current work

that addresses these questions, we do want to elaborate on one

of these questions, which is perhaps the most hotly debated in

the field at present. This is whether there are multiple valuation

subsystems, and if so, how these systems are defined, how
Neuron 63, September 24, 2009 ª2009 Elsevier Inc. 741
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independent or interactive they are, and how their valuations are

combined into a final valuation that determines choice. Critically,

this debate is not about whether different regions encode

subjective value in a different manner—for example, the menu-

invariant responses in orbitofrontal cortex compared to the

relative value responses in LIP. Rather, the question is whether

different systems encode different and inconsistent values for

the same actions, such that these different valuations would

lead to diverging conclusions about the best action to take.

Many proposals along these lines have been made (Balleine

et al., 2009; Balleine and Dickinson, 1998; Bossaerts et al.,

2009; Daw et al., 2005; Dayan and Balleine, 2002; Rangel

et al., 2008). One set builds upon a distinction made in the

psychological literature between: Pavlovian systems, which learn

a relationship between stimuli and outcomes and activate simple

approach and withdrawal responses; habitual systems, which

learn a relationship between stimuli and responses and therefore

do not adjust quickly to changes in contingency or devaluation of

rewards; and goal-directed systems, which learn a relationship

between responses and outcomes and therefore do adjust

quickly to changes in contingency or devaluation of rewards.

Another related set builds upon a distinction between model-

free reinforcement learning algorithms, which make minimal

assumptions and work on ‘‘cached’’ action values, and more

sophisticated model-based algorithms, which use more detailed

information about the structure of the environment and can

therefore adjust more quickly to changes in the environment.

These proposals usually associate the different systems with

different regions of the frontal cortex and striatum (Balleine

et al., 2009) and raise the additional question of how these

multiple valuations interact or combine to control behavior

(Daw et al., 2005). It is important to note that most of the

evidence we have reviewed here concerns decision making by

what would be characterized in much of this literature as the

‘‘goal-directed’’ system. This highlights the fact that our under-

standing of valuation circuitry is in its infancy. A critical question

going forward is how multiple valuation circuits are integrated

and how we can best account for the functional role of different

subregions of ventromedial prefrontal cortex and striatum in

valuation. While no one today knows how this debate will finally

be resolved, we can identify the resolution of these issues as crit-

ical to the forward progress of decision studies.

Another significant area of research that we have neglected in

this review concerns the function of dorsomedial prefrontal and

medial parietal circuits in decision making. Several recent

reviews have focused specifically on the role of these structures

in valuation and choice (Lee, 2008; Platt and Huettel, 2008;

Rushworth and Behrens, 2008). Some of the most recently iden-

tified and interesting electrophysiological signals have been

found in dorsal anterior cingulate (Hayden et al., 2009; Matsu-

moto et al., 2007; Quilodran et al., 2008; Seo and Lee, 2007,

2009) and the posterior cingulate (Hayden et al., 2008; McCoy

and Platt, 2005). Decision-related signals in these areas have

been found to occur after a choice has been made, in response

to feedback about the result of that choice. One key function of

these regions may therefore be in the monitoring of choice

outcomes and the subsequent adjustment of both choice

behavior and sensory acuity in response to this monitoring.
742 Neuron 63, September 24, 2009 ª2009 Elsevier Inc.
However, there is also evidence suggesting that parts of the

anterior cingulate may encode action-based subjective values,

in an analogous manner to the orbitofrontal encoding of

goods-based subjective values (Rudebeck et al., 2008). This reit-

erates the need for work delineating the specific functional roles

of different parts of ventromedial prefrontal cortex in valuation

and decision making.

Finally, a major topic area that we have not explicitly discussed

in detail concerns decisions where multiple agents are involved

or affected. These are situations that can be modeled using

the formal frameworks of game theory and behavioral game

theory. Many, and perhaps most, of the human neuroimaging

studies of decision making have involved social interactions

and games, and several reviews have been dedicated to these

studies (Fehr and Camerer, 2007; Lee, 2008; Montague and

Lohrenz, 2007; Singer and Fehr, 2005). For our purposes, it is

important to note that the same neural mechanisms we have

described above are now known to operate during social deci-

sions (Barraclough et al., 2004; de Quervain et al., 2004; Dorris

and Glimcher, 2004; Hampton et al., 2008; Harbaugh et al.,

2007; King-Casas et al., 2005; Moll et al., 2006). Of course, these

decisions also require additional processes, such as the ability

to model other people’s minds and make inferences about

their beliefs (Adolphs, 2003; Saxe et al., 2004), and many

ongoing investigations are aimed at understanding the role of

particular brain regions in these social functions during decision

making (Hampton et al., 2008; Tankersley et al., 2007; Tomlin

et al., 2006).

Conclusion
Neurophysiological investigations over the last seven years

have begun to solidify the basic outlines of a neural mechanism

for choice. This breakneck pace of discovery makes us opti-

mistic that the field will soon be able to resolve many of the

current controversies and that it will also expand to address

some of the questions that are now completely open.

Future neurophysiological models of decision making should

prove relevant beyond the domain of basic neuroscience. Since

neurophysiological models share with economic ones the goal of

explaining choices, ultimately there should prove to be links

between concepts in the two kinds of models. For example,

the neural noise in different brain circuits might correspond to

the different kinds of stochasticity that are posited in different

classes of economic choice models (McFadden, 1974; Selten,

1975). Similarly, rewards are experienced through sensory

systems, with transducers that have both a shifting reference

point and a finite dynamic range. These psychophysically

characterized properties of sensory systems might contribute

both to the decreasing sensitivity and reference dependence

of valuations, which are both key aspects of recent economic

models (Koszegi and Rabin, 2006). Moving forward, we think

the greatest promise lies in building models of choice that incor-

porate constraints from both the theoretical and mechanistic

levels of analysis.

Ultimately, such models should prove useful to questions of

human health and disease. There are already several elegant

examples of how an understanding of the neurobiological

mechanisms of decision making has provided a foundation for



Neuron

Review
understanding aberrant decision making in addiction, psychi-

atric disorders, autism, and Parkinson’s disease (Bernheim and

Rangel, 2004; Chiu et al., 2008a, 2008b; Frank et al., 2004;

King-Casas et al., 2008; Redish, 2004). In the future, we feel

confident that understanding the neurobiology of decision

making also points the way toward improved treatments of these

diseases and others, where people’s choices play a key role.
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